PAAL : a framework based on authentication, aggregation, and local differential privacy for internet of multimedia things
- Usman, Muhammad, Jan, Mian, Puthal, Deepak
- Authors: Usman, Muhammad , Jan, Mian , Puthal, Deepak
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Internet of Things Journal Vol. 7, no. 4 (2020), p. 2501-2508
- Full Text:
- Reviewed:
- Description: Internet of Multimedia Things (IoMT) applications generate huge volumes of multimedia data that are uploaded to cloud servers for storage and processing. During the uploading process, the IoMT applications face three major challenges, i.e., node management, privacy-preserving, and network protection. In this article, we propose a multilayer framework (PAAL) based on a multilevel edge computing architecture to manage end and edge devices, preserve the privacy of end-devices and data, and protect the underlying network from external attacks. The proposed framework has three layers. In the first layer, the underlying network is partitioned into multiple clusters to manage end-devices and level-one edge devices (LOEDs). In the second layer, the LOEDs apply an efficient aggregation technique to reduce the volumes of generated data and preserve the privacy of end-devices. The privacy of sensitive information in aggregated data is protected through a local differential privacy-based technique. In the last layer, the mobile sinks are registered with a level-two edge device via a handshaking mechanism to protect the underlying network from external threats. Experimental results show that the proposed framework performs better as compared to existing frameworks in terms of managing the nodes, preserving the privacy of end-devices and sensitive information, and protecting the underlying network. © 2014 IEEE.
- Authors: Usman, Muhammad , Jan, Mian , Puthal, Deepak
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Internet of Things Journal Vol. 7, no. 4 (2020), p. 2501-2508
- Full Text:
- Reviewed:
- Description: Internet of Multimedia Things (IoMT) applications generate huge volumes of multimedia data that are uploaded to cloud servers for storage and processing. During the uploading process, the IoMT applications face three major challenges, i.e., node management, privacy-preserving, and network protection. In this article, we propose a multilayer framework (PAAL) based on a multilevel edge computing architecture to manage end and edge devices, preserve the privacy of end-devices and data, and protect the underlying network from external attacks. The proposed framework has three layers. In the first layer, the underlying network is partitioned into multiple clusters to manage end-devices and level-one edge devices (LOEDs). In the second layer, the LOEDs apply an efficient aggregation technique to reduce the volumes of generated data and preserve the privacy of end-devices. The privacy of sensitive information in aggregated data is protected through a local differential privacy-based technique. In the last layer, the mobile sinks are registered with a level-two edge device via a handshaking mechanism to protect the underlying network from external threats. Experimental results show that the proposed framework performs better as compared to existing frameworks in terms of managing the nodes, preserving the privacy of end-devices and sensitive information, and protecting the underlying network. © 2014 IEEE.
PFARS : Enhancing throughput and lifetime of heterogeneous WSNs through power-aware fusion, aggregation, and routing scheme
- Khan, Rahim, Zakarya, Muhammad, Tan, Zhiyuan, Usman, Muhammad, Jan, Mian, Khan, Mukhtaj
- Authors: Khan, Rahim , Zakarya, Muhammad , Tan, Zhiyuan , Usman, Muhammad , Jan, Mian , Khan, Mukhtaj
- Date: 2019
- Type: Text , Journal article
- Relation: International Journal of Communication Systems Vol. 32, no. 18 (Dec 2019), p. 21
- Full Text:
- Reviewed:
- Description: Heterogeneous wireless sensor networks (WSNs) consist of resource-starving nodes that face a challenging task of handling various issues such as data redundancy, data fusion, congestion control, and energy efficiency. In these networks, data fusion algorithms process the raw data generated by a sensor node in an energy-efficient manner to reduce redundancy, improve accuracy, and enhance the network lifetime. In literature, these issues are addressed individually, and most of the proposed solutions are either application-specific or too complex that make their implementation unrealistic, specifically, in a resource-constrained environment. In this paper, we propose a novel node-level data fusion algorithm for heterogeneous WSNs to detect noisy data and replace them with highly refined data. To minimize the amount of transmitted data, a hybrid data aggregation algorithm is proposed that performs in-network processing while preserving the reliability of gathered data. This combination of data fusion and data aggregation algorithms effectively handle the aforementioned issues by ensuring an efficient utilization of the available resources. Apart from fusion and aggregation, a biased traffic distribution algorithm is introduced that considerably increases the overall lifetime of heterogeneous WSNs. The proposed algorithm performs the tedious task of traffic distribution according to the network's statistics, ie, the residual energy of neighboring nodes and their importance from a network's connectivity perspective. All our proposed algorithms were tested on a real-time dataset obtained through our deployed heterogeneous WSN in an orange orchard and also on publicly available benchmark datasets. Experimental results verify that our proposed algorithms outperform the existing approaches in terms of various performance metrics such as throughput, lifetime, data accuracy, computational time, and delay.
- Authors: Khan, Rahim , Zakarya, Muhammad , Tan, Zhiyuan , Usman, Muhammad , Jan, Mian , Khan, Mukhtaj
- Date: 2019
- Type: Text , Journal article
- Relation: International Journal of Communication Systems Vol. 32, no. 18 (Dec 2019), p. 21
- Full Text:
- Reviewed:
- Description: Heterogeneous wireless sensor networks (WSNs) consist of resource-starving nodes that face a challenging task of handling various issues such as data redundancy, data fusion, congestion control, and energy efficiency. In these networks, data fusion algorithms process the raw data generated by a sensor node in an energy-efficient manner to reduce redundancy, improve accuracy, and enhance the network lifetime. In literature, these issues are addressed individually, and most of the proposed solutions are either application-specific or too complex that make their implementation unrealistic, specifically, in a resource-constrained environment. In this paper, we propose a novel node-level data fusion algorithm for heterogeneous WSNs to detect noisy data and replace them with highly refined data. To minimize the amount of transmitted data, a hybrid data aggregation algorithm is proposed that performs in-network processing while preserving the reliability of gathered data. This combination of data fusion and data aggregation algorithms effectively handle the aforementioned issues by ensuring an efficient utilization of the available resources. Apart from fusion and aggregation, a biased traffic distribution algorithm is introduced that considerably increases the overall lifetime of heterogeneous WSNs. The proposed algorithm performs the tedious task of traffic distribution according to the network's statistics, ie, the residual energy of neighboring nodes and their importance from a network's connectivity perspective. All our proposed algorithms were tested on a real-time dataset obtained through our deployed heterogeneous WSN in an orange orchard and also on publicly available benchmark datasets. Experimental results verify that our proposed algorithms outperform the existing approaches in terms of various performance metrics such as throughput, lifetime, data accuracy, computational time, and delay.
RaSEC : an intelligent framework for reliable and secure multilevel edge computing in industrial environments
- Usman, Muhammad, Jolfaei, Alireza, Jan, Mian
- Authors: Usman, Muhammad , Jolfaei, Alireza , Jan, Mian
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Transactions on Industry Applications Vol. 56, no. 4 (2020), p. 4543-4551
- Full Text:
- Reviewed:
- Description: Industrial applications generate big data with redundant information that is transmitted over heterogeneous networks. The transmission of big data with redundant information not only increases the overall end-to-end delay but also increases the computational load on servers which affects the performance of industrial applications. To address these challenges, we propose an intelligent framework named Reliable and Secure multi-level Edge Computing (RaSEC), which operates in three phases. In the first phase, level-one edge devices apply a lightweight aggregation technique on the generated data. This technique not only reduces the size of the generated data but also helps in preserving the privacy of data sources. In the second phase, a multistep process is used to register level-two edge devices (LTEDs) with high-level edge devices (HLEDs). Due to the registration process, only legitimate LTEDs can forward data to the HLEDs, and as a result, the computational load on HLEDs decreases. In the third phase, the HLEDs use a convolutional neural network to detect the presence of moving objects in the data forwarded by LTEDs. If a movement is detected, the data is uploaded to the cloud servers for further analysis; otherwise, the data is discarded to minimize the use of computational resources on cloud computing platforms. The proposed framework reduces the response time by forwarding useful information to the cloud servers and can be utilized by various industrial applications. Our theoretical and experimental results confirm the resiliency of our framework with respect to security and privacy threats. © 1972-2012 IEEE.
- Authors: Usman, Muhammad , Jolfaei, Alireza , Jan, Mian
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Transactions on Industry Applications Vol. 56, no. 4 (2020), p. 4543-4551
- Full Text:
- Reviewed:
- Description: Industrial applications generate big data with redundant information that is transmitted over heterogeneous networks. The transmission of big data with redundant information not only increases the overall end-to-end delay but also increases the computational load on servers which affects the performance of industrial applications. To address these challenges, we propose an intelligent framework named Reliable and Secure multi-level Edge Computing (RaSEC), which operates in three phases. In the first phase, level-one edge devices apply a lightweight aggregation technique on the generated data. This technique not only reduces the size of the generated data but also helps in preserving the privacy of data sources. In the second phase, a multistep process is used to register level-two edge devices (LTEDs) with high-level edge devices (HLEDs). Due to the registration process, only legitimate LTEDs can forward data to the HLEDs, and as a result, the computational load on HLEDs decreases. In the third phase, the HLEDs use a convolutional neural network to detect the presence of moving objects in the data forwarded by LTEDs. If a movement is detected, the data is uploaded to the cloud servers for further analysis; otherwise, the data is discarded to minimize the use of computational resources on cloud computing platforms. The proposed framework reduces the response time by forwarding useful information to the cloud servers and can be utilized by various industrial applications. Our theoretical and experimental results confirm the resiliency of our framework with respect to security and privacy threats. © 1972-2012 IEEE.
Security and blockchain convergence with internet of multimedia things : current trends, research challenges and future directions
- Jan, Mian, Cai, Jinjin, Gao, Xiang-Chuan, Khan, Fazlullah, Mastorakis, Spyridon, Usman, Muhammad, Alazab, Mamoun, Watters, Paul
- Authors: Jan, Mian , Cai, Jinjin , Gao, Xiang-Chuan , Khan, Fazlullah , Mastorakis, Spyridon , Usman, Muhammad , Alazab, Mamoun , Watters, Paul
- Date: 2021
- Type: Text , Journal article
- Relation: Journal of Network and Computer Applications Vol. 175, no. (2021), p.
- Full Text:
- Reviewed:
- Description: The Internet of Multimedia Things (IoMT) orchestration enables the integration of systems, software, cloud, and smart sensors into a single platform. The IoMT deals with scalar as well as multimedia data. In these networks, sensor-embedded devices and their data face numerous challenges when it comes to security. In this paper, a comprehensive review of the existing literature for IoMT is presented in the context of security and blockchain. The latest literature on all three aspects of security, i.e., authentication, privacy, and trust is provided to explore the challenges experienced by multimedia data. The convergence of blockchain and IoMT along with multimedia-enabled blockchain platforms are discussed for emerging applications. To highlight the significance of this survey, large-scale commercial projects focused on security and blockchain for multimedia applications are reviewed. The shortcomings of these projects are explored and suggestions for further improvement are provided. Based on the aforementioned discussion, we present our own case study for healthcare industry: a theoretical framework having security and blockchain as key enablers. The case study reflects the importance of security and blockchain in multimedia applications of healthcare sector. Finally, we discuss the convergence of emerging technologies with security, blockchain and IoMT to visualize the future of tomorrow's applications. © 2020 Elsevier Ltd
- Authors: Jan, Mian , Cai, Jinjin , Gao, Xiang-Chuan , Khan, Fazlullah , Mastorakis, Spyridon , Usman, Muhammad , Alazab, Mamoun , Watters, Paul
- Date: 2021
- Type: Text , Journal article
- Relation: Journal of Network and Computer Applications Vol. 175, no. (2021), p.
- Full Text:
- Reviewed:
- Description: The Internet of Multimedia Things (IoMT) orchestration enables the integration of systems, software, cloud, and smart sensors into a single platform. The IoMT deals with scalar as well as multimedia data. In these networks, sensor-embedded devices and their data face numerous challenges when it comes to security. In this paper, a comprehensive review of the existing literature for IoMT is presented in the context of security and blockchain. The latest literature on all three aspects of security, i.e., authentication, privacy, and trust is provided to explore the challenges experienced by multimedia data. The convergence of blockchain and IoMT along with multimedia-enabled blockchain platforms are discussed for emerging applications. To highlight the significance of this survey, large-scale commercial projects focused on security and blockchain for multimedia applications are reviewed. The shortcomings of these projects are explored and suggestions for further improvement are provided. Based on the aforementioned discussion, we present our own case study for healthcare industry: a theoretical framework having security and blockchain as key enablers. The case study reflects the importance of security and blockchain in multimedia applications of healthcare sector. Finally, we discuss the convergence of emerging technologies with security, blockchain and IoMT to visualize the future of tomorrow's applications. © 2020 Elsevier Ltd
Smart sensing-enabled decision support system for water scheduling in orange orchard
- Khan, Rahim, Zakarya, Muhammad, Balasubramanian, Venki, Jan, Mian, Menon, Varun
- Authors: Khan, Rahim , Zakarya, Muhammad , Balasubramanian, Venki , Jan, Mian , Menon, Varun
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Sensors Journal Vol. 21, no. 16 (2021), p. 17492-17499
- Full Text:
- Reviewed:
- Description: The scarcity of water resources throughout the world demands its optimum utilization in various sectors. Smart Sensing-enabled irrigation management systems are the ideal solutions to ensure the optimum utilization of water resources in the agriculture sector. This paper presents a wireless sensor network-enabled Decision Support System (DSS) for developing a need-based irrigation schedule for the orange orchard. For efficient monitoring of various in-field parameters, our proposed approach uses the latest smart sensing technology such as soil moisture, leaf-wetness, temperature and humidity. The proposed smart sensing-enabled test-bed was deployed in the orange orchard of our institute for approximately one year and successfully adjusted its irrigation schedule according to the needs and demands of the plants. Moreover, a modified Longest Common SubSequence (LCSS) mechanism is integrated with the proposed DSS for distinguishing multi-valued noise from the abrupt changing scenarios. To resolve the concurrent communication problem of two or more wasp-mote sensor boards with a common receiver, an enhanced RTS/CTS handshake mechanism is presented. Our proposed DSS compares the most recently refined data with pre-defined threshold values for efficient water management in the orchard. Irrigation activity is scheduled if water deficit criterion is met and the farmer is informed accordingly. Both the experimental and simulation results show that the proposed scheme performs better in comparison to the existing schemes. © 2001-2012 IEEE.
- Authors: Khan, Rahim , Zakarya, Muhammad , Balasubramanian, Venki , Jan, Mian , Menon, Varun
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Sensors Journal Vol. 21, no. 16 (2021), p. 17492-17499
- Full Text:
- Reviewed:
- Description: The scarcity of water resources throughout the world demands its optimum utilization in various sectors. Smart Sensing-enabled irrigation management systems are the ideal solutions to ensure the optimum utilization of water resources in the agriculture sector. This paper presents a wireless sensor network-enabled Decision Support System (DSS) for developing a need-based irrigation schedule for the orange orchard. For efficient monitoring of various in-field parameters, our proposed approach uses the latest smart sensing technology such as soil moisture, leaf-wetness, temperature and humidity. The proposed smart sensing-enabled test-bed was deployed in the orange orchard of our institute for approximately one year and successfully adjusted its irrigation schedule according to the needs and demands of the plants. Moreover, a modified Longest Common SubSequence (LCSS) mechanism is integrated with the proposed DSS for distinguishing multi-valued noise from the abrupt changing scenarios. To resolve the concurrent communication problem of two or more wasp-mote sensor boards with a common receiver, an enhanced RTS/CTS handshake mechanism is presented. Our proposed DSS compares the most recently refined data with pre-defined threshold values for efficient water management in the orchard. Irrigation activity is scheduled if water deficit criterion is met and the farmer is informed accordingly. Both the experimental and simulation results show that the proposed scheme performs better in comparison to the existing schemes. © 2001-2012 IEEE.
SmartEdge : An end-to-end encryption framework for an edge-enabled smart city application
- Jan, Mian, Zhang, Wenjing, Usman, Muhammad, Tan, Zhiyuan, Khan, Fazlullah, Luo, Entao
- Authors: Jan, Mian , Zhang, Wenjing , Usman, Muhammad , Tan, Zhiyuan , Khan, Fazlullah , Luo, Entao
- Date: 2019
- Type: Text , Journal article
- Relation: Journal of Network and Computer Applications Vol. 137, no. (2019), p. 1-10
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has the potential to transform communities around the globe into smart cities. The massive deployment of sensor-embedded devices in the smart cities generates voluminous amounts of data that need to be stored and processed in an efficient manner. Long-haul data transmission to the remote cloud data centers leads to higher delay and bandwidth consumption. In smart cities, the delay-sensitive applications have stringent requirements in term of response time. To reduce latency and bandwidth consumption, edge computing plays a pivotal role. The resource-constrained smart devices at the network core need to offload computationally complex tasks to the edge devices located in their vicinity and have relatively higher resources. In this paper, we propose an end-to-end encryption framework, SmartEdge, for a smart city application by executing computationally complex tasks at the network edge and cloud data centers. Using a lightweight symmetric encryption technique, we establish a secure connection among the smart core devices for multimedia streaming towards the registered and verified edge devices. Upon receiving the data, the edge devices encrypts the multimedia streams, encodes them, and broadcast to the cloud data centers. Prior to the broadcasting, each edge device establishes a secured connection with a data center that relies on the combination of symmetric and asymmetric encryption techniques. In SmartEdge, the execution of a lightweight encryption technique at the resource-constrained smart devices, and relatively complex encryption techniques at the network edge and cloud data centers reduce the resource utilization of the entire network. The proposed framework reduces the response time, security overhead, computational and communication costs, and has a lower end-to-end encryption delay for participating entities. Moreover, the proposed scheme is highly resilient against various adversarial attacks.
- Authors: Jan, Mian , Zhang, Wenjing , Usman, Muhammad , Tan, Zhiyuan , Khan, Fazlullah , Luo, Entao
- Date: 2019
- Type: Text , Journal article
- Relation: Journal of Network and Computer Applications Vol. 137, no. (2019), p. 1-10
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has the potential to transform communities around the globe into smart cities. The massive deployment of sensor-embedded devices in the smart cities generates voluminous amounts of data that need to be stored and processed in an efficient manner. Long-haul data transmission to the remote cloud data centers leads to higher delay and bandwidth consumption. In smart cities, the delay-sensitive applications have stringent requirements in term of response time. To reduce latency and bandwidth consumption, edge computing plays a pivotal role. The resource-constrained smart devices at the network core need to offload computationally complex tasks to the edge devices located in their vicinity and have relatively higher resources. In this paper, we propose an end-to-end encryption framework, SmartEdge, for a smart city application by executing computationally complex tasks at the network edge and cloud data centers. Using a lightweight symmetric encryption technique, we establish a secure connection among the smart core devices for multimedia streaming towards the registered and verified edge devices. Upon receiving the data, the edge devices encrypts the multimedia streams, encodes them, and broadcast to the cloud data centers. Prior to the broadcasting, each edge device establishes a secured connection with a data center that relies on the combination of symmetric and asymmetric encryption techniques. In SmartEdge, the execution of a lightweight encryption technique at the resource-constrained smart devices, and relatively complex encryption techniques at the network edge and cloud data centers reduce the resource utilization of the entire network. The proposed framework reduces the response time, security overhead, computational and communication costs, and has a lower end-to-end encryption delay for participating entities. Moreover, the proposed scheme is highly resilient against various adversarial attacks.
- «
- ‹
- 1
- ›
- »