Marginal and average weight-enabled data aggregation mechanism for the resource-constrained networks
- Jan, Syed, Khan, Rahim, Khan, Fazlullah, Jan, Mian, Balasubramanian, Venki
- Authors: Jan, Syed , Khan, Rahim , Khan, Fazlullah , Jan, Mian , Balasubramanian, Venki
- Date: 2021
- Type: Text , Journal article
- Relation: Computer Communications Vol. 174, no. (2021), p. 101-108
- Full Text: false
- Reviewed:
- Description: In Wireless Sensor Networks (WSNs), data redundancy is a challenging issue that not only introduces network congestion but also consumes a considerable amount of sensor node resources. Data redundancy occurs due to the spatial and temporal correlation among the data gathered by the neighboring nodes. Data aggregation is a prominent technique that performs in-network filtering of the redundant data and accelerates the knowledge extraction by eliminating the correlated data. However, most of the data aggregation techniques have lower accuracy as they do not cater for erroneous data from faulty nodes and pose an open research challenge. To address this challenge, we have proposed a novel, lightweight, and energy-efficient function-based data aggregation approach for a cluster-based hierarchical WSN. Our proposed approach works at two levels, i.e., at the node level and at the cluster head level. At the node level, the data aggregation is performed using Exponential Moving Average (EMA) and a threshold-based mechanism is adopted to detect any outliers for improving the accuracy of aggregated data. At the cluster head level, we have employed a modified version of Euclidean distance function to provide highly-refined aggregated data to the base station. Our experimental results show that our approach reduces the communication cost, transmission cost, energy consumption at the nodes and cluster heads, and delivers highly-refined and fused data to the base station. © 2021 Elsevier B.V. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramaniam” is provided in this record**
Security and blockchain convergence with internet of multimedia things : current trends, research challenges and future directions
- Jan, Mian, Cai, Jinjin, Gao, Xiang-Chuan, Khan, Fazlullah, Mastorakis, Spyridon, Usman, Muhammad, Alazab, Mamoun, Watters, Paul
- Authors: Jan, Mian , Cai, Jinjin , Gao, Xiang-Chuan , Khan, Fazlullah , Mastorakis, Spyridon , Usman, Muhammad , Alazab, Mamoun , Watters, Paul
- Date: 2021
- Type: Text , Journal article
- Relation: Journal of Network and Computer Applications Vol. 175, no. (2021), p.
- Full Text:
- Reviewed:
- Description: The Internet of Multimedia Things (IoMT) orchestration enables the integration of systems, software, cloud, and smart sensors into a single platform. The IoMT deals with scalar as well as multimedia data. In these networks, sensor-embedded devices and their data face numerous challenges when it comes to security. In this paper, a comprehensive review of the existing literature for IoMT is presented in the context of security and blockchain. The latest literature on all three aspects of security, i.e., authentication, privacy, and trust is provided to explore the challenges experienced by multimedia data. The convergence of blockchain and IoMT along with multimedia-enabled blockchain platforms are discussed for emerging applications. To highlight the significance of this survey, large-scale commercial projects focused on security and blockchain for multimedia applications are reviewed. The shortcomings of these projects are explored and suggestions for further improvement are provided. Based on the aforementioned discussion, we present our own case study for healthcare industry: a theoretical framework having security and blockchain as key enablers. The case study reflects the importance of security and blockchain in multimedia applications of healthcare sector. Finally, we discuss the convergence of emerging technologies with security, blockchain and IoMT to visualize the future of tomorrow's applications. © 2020 Elsevier Ltd
- Authors: Jan, Mian , Cai, Jinjin , Gao, Xiang-Chuan , Khan, Fazlullah , Mastorakis, Spyridon , Usman, Muhammad , Alazab, Mamoun , Watters, Paul
- Date: 2021
- Type: Text , Journal article
- Relation: Journal of Network and Computer Applications Vol. 175, no. (2021), p.
- Full Text:
- Reviewed:
- Description: The Internet of Multimedia Things (IoMT) orchestration enables the integration of systems, software, cloud, and smart sensors into a single platform. The IoMT deals with scalar as well as multimedia data. In these networks, sensor-embedded devices and their data face numerous challenges when it comes to security. In this paper, a comprehensive review of the existing literature for IoMT is presented in the context of security and blockchain. The latest literature on all three aspects of security, i.e., authentication, privacy, and trust is provided to explore the challenges experienced by multimedia data. The convergence of blockchain and IoMT along with multimedia-enabled blockchain platforms are discussed for emerging applications. To highlight the significance of this survey, large-scale commercial projects focused on security and blockchain for multimedia applications are reviewed. The shortcomings of these projects are explored and suggestions for further improvement are provided. Based on the aforementioned discussion, we present our own case study for healthcare industry: a theoretical framework having security and blockchain as key enablers. The case study reflects the importance of security and blockchain in multimedia applications of healthcare sector. Finally, we discuss the convergence of emerging technologies with security, blockchain and IoMT to visualize the future of tomorrow's applications. © 2020 Elsevier Ltd
SmartEdge : An end-to-end encryption framework for an edge-enabled smart city application
- Jan, Mian, Zhang, Wenjing, Usman, Muhammad, Tan, Zhiyuan, Khan, Fazlullah, Luo, Entao
- Authors: Jan, Mian , Zhang, Wenjing , Usman, Muhammad , Tan, Zhiyuan , Khan, Fazlullah , Luo, Entao
- Date: 2019
- Type: Text , Journal article
- Relation: Journal of Network and Computer Applications Vol. 137, no. (2019), p. 1-10
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has the potential to transform communities around the globe into smart cities. The massive deployment of sensor-embedded devices in the smart cities generates voluminous amounts of data that need to be stored and processed in an efficient manner. Long-haul data transmission to the remote cloud data centers leads to higher delay and bandwidth consumption. In smart cities, the delay-sensitive applications have stringent requirements in term of response time. To reduce latency and bandwidth consumption, edge computing plays a pivotal role. The resource-constrained smart devices at the network core need to offload computationally complex tasks to the edge devices located in their vicinity and have relatively higher resources. In this paper, we propose an end-to-end encryption framework, SmartEdge, for a smart city application by executing computationally complex tasks at the network edge and cloud data centers. Using a lightweight symmetric encryption technique, we establish a secure connection among the smart core devices for multimedia streaming towards the registered and verified edge devices. Upon receiving the data, the edge devices encrypts the multimedia streams, encodes them, and broadcast to the cloud data centers. Prior to the broadcasting, each edge device establishes a secured connection with a data center that relies on the combination of symmetric and asymmetric encryption techniques. In SmartEdge, the execution of a lightweight encryption technique at the resource-constrained smart devices, and relatively complex encryption techniques at the network edge and cloud data centers reduce the resource utilization of the entire network. The proposed framework reduces the response time, security overhead, computational and communication costs, and has a lower end-to-end encryption delay for participating entities. Moreover, the proposed scheme is highly resilient against various adversarial attacks.
- Authors: Jan, Mian , Zhang, Wenjing , Usman, Muhammad , Tan, Zhiyuan , Khan, Fazlullah , Luo, Entao
- Date: 2019
- Type: Text , Journal article
- Relation: Journal of Network and Computer Applications Vol. 137, no. (2019), p. 1-10
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has the potential to transform communities around the globe into smart cities. The massive deployment of sensor-embedded devices in the smart cities generates voluminous amounts of data that need to be stored and processed in an efficient manner. Long-haul data transmission to the remote cloud data centers leads to higher delay and bandwidth consumption. In smart cities, the delay-sensitive applications have stringent requirements in term of response time. To reduce latency and bandwidth consumption, edge computing plays a pivotal role. The resource-constrained smart devices at the network core need to offload computationally complex tasks to the edge devices located in their vicinity and have relatively higher resources. In this paper, we propose an end-to-end encryption framework, SmartEdge, for a smart city application by executing computationally complex tasks at the network edge and cloud data centers. Using a lightweight symmetric encryption technique, we establish a secure connection among the smart core devices for multimedia streaming towards the registered and verified edge devices. Upon receiving the data, the edge devices encrypts the multimedia streams, encodes them, and broadcast to the cloud data centers. Prior to the broadcasting, each edge device establishes a secured connection with a data center that relies on the combination of symmetric and asymmetric encryption techniques. In SmartEdge, the execution of a lightweight encryption technique at the resource-constrained smart devices, and relatively complex encryption techniques at the network edge and cloud data centers reduce the resource utilization of the entire network. The proposed framework reduces the response time, security overhead, computational and communication costs, and has a lower end-to-end encryption delay for participating entities. Moreover, the proposed scheme is highly resilient against various adversarial attacks.
- «
- ‹
- 1
- ›
- »