Your selections:

7Nonsmooth optimization
4Nonconvex optimization
30102 Applied Mathematics
30801 Artificial Intelligence and Image Processing
3Bundle methods
20103 Numerical and Computational Mathematics
20906 Electrical and Electronic Engineering
2Cluster analysis
2DC functions
10806 Information Systems
10899 Other Information and Computing Sciences
1Algorithms
1Bayesian network classifiers
1Bayesian networks
1Clarke stationarity
1Classifiers
1Clustering algorithms
1Clustering problems
1Clusterwise regression
1Computer hardware

Show More

Show Less

Format Type

DC programming algorithm for clusterwise linear L1 regression

**Authors:**Bagirov, Adil , Taheri, Sona**Date:**2017**Type:**Text , Journal article**Relation:**Journal of the Operations Research Society of China Vol. 5, no. 2 (2017), p. 233-256**Relation:**http://purl.org/au-research/grants/arc/DP140103213**Full Text:**false**Reviewed:****Description:**The aim of this paper is to develop an algorithm for solving the clusterwise linear least absolute deviations regression problem. This problem is formulated as a nonsmooth nonconvex optimization problem, and the objective function is represented as a difference of convex functions. Optimality conditions are derived by using this representation. An algorithm is designed based on the difference of convex representation and an incremental approach. The proposed algorithm is tested using small to large artificial and real-world data sets. © 2017, Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and Springer-Verlag Berlin Heidelberg.

Nonsmooth DC programming approach to the minimum sum-of-squares clustering problems

- Bagirov, Adil, Taheri, Sona, Ugon, Julien

**Authors:**Bagirov, Adil , Taheri, Sona , Ugon, Julien**Date:**2016**Type:**Text , Journal article**Relation:**Pattern Recognition Vol. 53, no. (2016), p. 12-24**Relation:**http://purl.org/au-research/grants/arc/DP140103213**Full Text:**false**Reviewed:****Description:**This paper introduces an algorithm for solving the minimum sum-of-squares clustering problems using their difference of convex representations. A non-smooth non-convex optimization formulation of the clustering problem is used to design the algorithm. Characterizations of critical points, stationary points in the sense of generalized gradients and inf-stationary points of the clustering problem are given. The proposed algorithm is tested and compared with other clustering algorithms using large real world data sets. © 2015 Elsevier Ltd. All rights reserved.

Solving minimax problems : Local smoothing versus global smoothing

- Bagirov, Adil, Sultanova, Nargiz, Al Nuaimat, Alia, Taheri, Sona

**Authors:**Bagirov, Adil , Sultanova, Nargiz , Al Nuaimat, Alia , Taheri, Sona**Date:**2018**Type:**Text , Conference proceedings**Relation:**4th International Conference on Numerical Analysis and Optimization, NAO-IV 2017; Muscat, Oman; 2nd-5th January 2017; published in Numerical Analysis and Optimization NAO-IV (part of the Springer Proceedings in Mathematics and Statistics book series PROMS, volume 235) Vol. 235, p. 23-43**Full Text:**false**Reviewed:****Description:**The aim of this chapter is to compare different smoothing techniques for solving finite minimax problems. We consider the local smoothing technique which approximates the function in some neighborhood of a point of nondifferentiability and also global smoothing techniques such as the exponential and hyperbolic smoothing which approximate the function in the whole domain. Computational results on the collection of academic test problems are used to compare different smoothing techniques. Results show the superiority of the local smoothing technique for convex problems and global smoothing techniques for nonconvex problems. © 2018, Springer International Publishing AG, part of Springer Nature.**Description:**Springer Proceedings in Mathematics and Statistics

A difference of convex optimization algorithm for piecewise linear regression

- Bagirov, Adil, Taheri, Sona, Asadi, Soodabeh

**Authors:**Bagirov, Adil , Taheri, Sona , Asadi, Soodabeh**Date:**2019**Type:**Text , Journal article**Relation:**Journal of Industrial and Management Optimization Vol. 15, no. 2 (2019), p. 909-932**Full Text:**false**Reviewed:****Description:**The problem of finding a continuous piecewise linear function approximating a regression function is considered. This problem is formulated as a nonconvex nonsmooth optimization problem where the objective function is represented as a difference of convex (DC) functions. Subdifferentials of DC components are computed and an algorithm is designed based on these subdifferentials to find piecewise linear functions. The algorithm is tested using some synthetic and real world data sets and compared with other regression algorithms.

- Bagirov, Adil, Taheri, Sona, Bai, Fusheng, Wu, Zhiyou

**Authors:**Bagirov, Adil , Taheri, Sona , Bai, Fusheng , Wu, Zhiyou**Date:**2019**Type:**Text , Book chapter , Book Chapter**Relation:**Nonsmooth Optimization and Its Applications (part of the International Series of Numerical Mathematics book series) Chapter 2 p. 17-44**Full Text:**false**Reviewed:****Description:**Nonsmooth convex optimization problems with two blocks of variables subject to linear constraints are considered. A new version of the alternating direction method of multipliers is developed for solving these problems. In this method the subproblems are solved approximately. The convergence of the method is studied. New test problems are designed and used to verify the efficiency of the proposed method and to compare it with two versions of the proximal bundle method.

Double bundle method for finding clarke stationary points in nonsmooth dc programming

- Joki, Kaisa, Bagirov, Adil, Karmitsa, Napsu, Makela, Marko, Taheri, Sona

**Authors:**Joki, Kaisa , Bagirov, Adil , Karmitsa, Napsu , Makela, Marko , Taheri, Sona**Date:**2018**Type:**Text , Journal article**Relation:**SIAM Journal on Optimization Vol. 28, no. 2 (2018), p. 1892-1919**Relation:**http://purl.org/au-research/grants/arc/DP140103213**Full Text:****Reviewed:****Description:**The aim of this paper is to introduce a new proximal double bundle method for unconstrained nonsmooth optimization, where the objective function is presented as a difference of two convex (DC) functions. The novelty in our method is a new escape procedure which enables us to guarantee approximate Clarke stationarity for solutions by utilizing the DC components of the objective function. This optimality condition is stronger than the criticality condition typically used in DC programming. Moreover, if a candidate solution is not approximate Clarke stationary, then the escape procedure returns a descent direction. With this escape procedure, we can avoid some shortcomings encountered when criticality is used. The finite termination of the double bundle method to an approximate Clarke stationary point is proved by assuming that the subdifferentials of DC components are polytopes. Finally, some encouraging numerical results are presented.

**Authors:**Joki, Kaisa , Bagirov, Adil , Karmitsa, Napsu , Makela, Marko , Taheri, Sona**Date:**2018**Type:**Text , Journal article**Relation:**SIAM Journal on Optimization Vol. 28, no. 2 (2018), p. 1892-1919**Relation:**http://purl.org/au-research/grants/arc/DP140103213**Full Text:****Reviewed:****Description:**The aim of this paper is to introduce a new proximal double bundle method for unconstrained nonsmooth optimization, where the objective function is presented as a difference of two convex (DC) functions. The novelty in our method is a new escape procedure which enables us to guarantee approximate Clarke stationarity for solutions by utilizing the DC components of the objective function. This optimality condition is stronger than the criticality condition typically used in DC programming. Moreover, if a candidate solution is not approximate Clarke stationary, then the escape procedure returns a descent direction. With this escape procedure, we can avoid some shortcomings encountered when criticality is used. The finite termination of the double bundle method to an approximate Clarke stationary point is proved by assuming that the subdifferentials of DC components are polytopes. Finally, some encouraging numerical results are presented.

New diagonal bundle method for clustering problems in large data sets

- Karmitsa, Napsu, Bagirov, Adil, Taheri, Sona

**Authors:**Karmitsa, Napsu , Bagirov, Adil , Taheri, Sona**Date:**2017**Type:**Text , Journal article**Relation:**European Journal of Operational Research Vol. 263, no. 2 (2017), p. 367-379**Relation:**http://purl.org/au-research/grants/arc/DP140103213**Full Text:**false**Reviewed:****Description:**Clustering is one of the most important tasks in data mining. Recent developments in computer hardware allow us to store in random access memory (RAM) and repeatedly read data sets with hundreds of thousands and even millions of data points. This makes it possible to use conventional clustering algorithms in such data sets. However, these algorithms may need prohibitively large computational time and fail to produce accurate solutions. Therefore, it is important to develop clustering algorithms which are accurate and can provide real time clustering in large data sets. This paper introduces one of them. Using nonsmooth optimization formulation of the clustering problem the objective function is represented as a difference of two convex (DC) functions. Then a new diagonal bundle algorithm that explicitly uses this structure is designed and combined with an incremental approach to solve this problem. The method is evaluated using real world data sets with both large number of attributes and large number of data points. The proposed method is compared with two other clustering algorithms using numerical results. © 2017 Elsevier B.V.

Clustering in large data sets with the limited memory bundle method

- Karmitsa, Napsu, Bagirov, Adil, Taheri, Sona

**Authors:**Karmitsa, Napsu , Bagirov, Adil , Taheri, Sona**Date:**2018**Type:**Text , Journal article**Relation:**Pattern Recognition Vol. 83, no. (2018), p. 245-259**Relation:**http://purl.org/au-research/grants/arc/DP140103213**Full Text:**false**Reviewed:****Description:**The aim of this paper is to design an algorithm based on nonsmooth optimization techniques to solve the minimum sum-of-squares clustering problems in very large data sets. First, the clustering problem is formulated as a nonsmooth optimization problem. Then the limited memory bundle method [Haarala et al., 2007] is modified and combined with an incremental approach to design a new clustering algorithm. The algorithm is evaluated using real world data sets with both the large number of attributes and the large number of data points. It is also compared with some other optimization based clustering algorithms. The numerical results demonstrate the efficiency of the proposed algorithm for clustering in very large data sets.

Improving Naive Bayes classifier using conditional probabilities

- Taheri, Sona, Mammadov, Musa, Bagirov, Adil

**Authors:**Taheri, Sona , Mammadov, Musa , Bagirov, Adil**Date:**2010**Type:**Text , Conference proceedings**Full Text:****Description:**Naive Bayes classifier is the simplest among Bayesian Network classifiers. It has shown to be very efficient on a variety of data classification problems. However, the strong assumption that all features are conditionally independent given the class is often violated on many real world applications. Therefore, improvement of the Naive Bayes classifier by alleviating the feature independence assumption has attracted much attention. In this paper, we develop a new version of the Naive Bayes classifier without assuming independence of features. The proposed algorithm approximates the interactions between features by using conditional probabilities. We present results of numerical experiments on several real world data sets, where continuous features are discretized by applying two different methods. These results demonstrate that the proposed algorithm significantly improve the performance of the Naive Bayes classifier, yet at the same time maintains its robustness. © 2011, Australian Computer Society, Inc.**Description:**2003009505

**Authors:**Taheri, Sona , Mammadov, Musa , Bagirov, Adil**Date:**2010**Type:**Text , Conference proceedings**Full Text:****Description:**Naive Bayes classifier is the simplest among Bayesian Network classifiers. It has shown to be very efficient on a variety of data classification problems. However, the strong assumption that all features are conditionally independent given the class is often violated on many real world applications. Therefore, improvement of the Naive Bayes classifier by alleviating the feature independence assumption has attracted much attention. In this paper, we develop a new version of the Naive Bayes classifier without assuming independence of features. The proposed algorithm approximates the interactions between features by using conditional probabilities. We present results of numerical experiments on several real world data sets, where continuous features are discretized by applying two different methods. These results demonstrate that the proposed algorithm significantly improve the performance of the Naive Bayes classifier, yet at the same time maintains its robustness. © 2011, Australian Computer Society, Inc.**Description:**2003009505

- «
- ‹
- 1
- ›
- »

Are you sure you would like to clear your session, including search history and login status?