Your selections:

6Goberna, Miguel
4Cánovas, Maria
4Dinh, Nguyen
4Kruger, Alexander
4Parra, Juan
3Volle, Michel
2Mo, T. H.
2Rubinov, Alex
2Théra, Michel
2Vera De Serio, Virginia
1Auslender, Alfred
1Correa, Rafael
1Ferrer, Albert
1Hall, Julian
1Hantoute, Abderrahim
1Mordukhovich, Borris
1Toledoa, Javier

Show More

Show Less

140103 Numerical and Computational Mathematics
50906 Electrical and Electronic Engineering
3Stability
3Subdifferential
2Asplund space
2Block perturbations
2Extremal principle
2Extremality
2Functions
2Increasing convex-along-rays functions
2Infinitely constrained optimization
2Linear programming
2Normal cone
2Optimality
2Regularity
2Semi infinite programming
2Semi-infinite and infinite programming
2Stationarity
2Variational analysis

Show More

Show Less

Format Type

Calmness of partially perturbed linear systems with an application to the central path

- Cánovas, Maria, Hall, Julian, López, Marco, Parra, Juan

**Authors:**Cánovas, Maria , Hall, Julian , López, Marco , Parra, Juan**Date:**2019**Type:**Text , Journal article**Relation:**Optimization Vol. 68, no. 2-3 (2019), p. 465-483**Full Text:****Reviewed:****Description:**In this paper we develop point-based formulas for the calmness modulus of the feasible set mapping in the context of linear inequality systems with a fixed abstract constraint and (partially) perturbed linear constraints. The case of totally perturbed linear systems was previously analyzed in [Canovas MJ, Lopez MA, Parra J, et al. Calmness of the feasible set mapping for linear inequality systems. Set-Valued Var Anal. 2014;22:375-389, Section 5]. We point out that the presence of such an abstract constraint yields the current paper to appeal to a notable different methodology with respect to previous works on the calmness modulus in linear programming. The interest of this model comes from the fact that partially perturbed systems naturally appear in many applications. As an illustration, the paper includes an example related to the classical central path construction. In this example we consider a certain feasible set mapping whose calmness modulus provides a measure of the convergence of the central path. Finally, we underline the fact that the expression for the calmness modulus obtained in this paper is (conceptually) implementable as far as it only involves the nominal data.

**Authors:**Cánovas, Maria , Hall, Julian , López, Marco , Parra, Juan**Date:**2019**Type:**Text , Journal article**Relation:**Optimization Vol. 68, no. 2-3 (2019), p. 465-483**Full Text:****Reviewed:****Description:**In this paper we develop point-based formulas for the calmness modulus of the feasible set mapping in the context of linear inequality systems with a fixed abstract constraint and (partially) perturbed linear constraints. The case of totally perturbed linear systems was previously analyzed in [Canovas MJ, Lopez MA, Parra J, et al. Calmness of the feasible set mapping for linear inequality systems. Set-Valued Var Anal. 2014;22:375-389, Section 5]. We point out that the presence of such an abstract constraint yields the current paper to appeal to a notable different methodology with respect to previous works on the calmness modulus in linear programming. The interest of this model comes from the fact that partially perturbed systems naturally appear in many applications. As an illustration, the paper includes an example related to the classical central path construction. In this example we consider a certain feasible set mapping whose calmness modulus provides a measure of the convergence of the central path. Finally, we underline the fact that the expression for the calmness modulus obtained in this paper is (conceptually) implementable as far as it only involves the nominal data.

Convexity and closedness in stable robust duality

- Dinh, Nguyen, Goberna, Miguel, López, Marco, Volle, Michel

**Authors:**Dinh, Nguyen , Goberna, Miguel , López, Marco , Volle, Michel**Date:**2019**Type:**Text , Journal article**Relation:**Optimization Letters Vol. 13, no. 2 (2019), p. 325-339**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**The paper deals with optimization problems with uncertain constraints and linear perturbations of the objective function, which are associated with given families of perturbation functions whose dual variable depends on the uncertainty parameters. More in detail, the paper provides characterizations of stable strong robust duality and stable robust duality under convexity and closedness assumptions. The paper also reviews the classical Fenchel duality of the sum of two functions by considering a suitable family of perturbation functions.

**Authors:**Dinh, Nguyen , Goberna, Miguel , López, Marco , Volle, Michel**Date:**2019**Type:**Text , Journal article**Relation:**Optimization Letters Vol. 13, no. 2 (2019), p. 325-339**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**The paper deals with optimization problems with uncertain constraints and linear perturbations of the objective function, which are associated with given families of perturbation functions whose dual variable depends on the uncertainty parameters. More in detail, the paper provides characterizations of stable strong robust duality and stable robust duality under convexity and closedness assumptions. The paper also reviews the classical Fenchel duality of the sum of two functions by considering a suitable family of perturbation functions.

Perturbation of error bounds

- Kruger, Alexander, López, Marco, Théra, Michel

**Authors:**Kruger, Alexander , López, Marco , Théra, Michel**Date:**2018**Type:**Text , Journal article**Relation:**Mathematical Programming Vol. 168, no. 1-2 (2018), p. 533-554**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**Our aim in the current article is to extend the developments in Kruger et al. (SIAM J Optim 20(6):3280–3296, 2010. doi:10.1137/100782206) and, more precisely, to characterize, in the Banach space setting, the stability of the local and global error bound property of inequalities determined by lower semicontinuous functions under data perturbations. We propose new concepts of (arbitrary, convex and linear) perturbations of the given function defining the system under consideration, which turn out to be a useful tool in our analysis. The characterizations of error bounds for families of perturbations can be interpreted as estimates of the ‘radius of error bounds’. The definitions and characterizations are illustrated by examples. © 2017, Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society.

**Authors:**Kruger, Alexander , López, Marco , Théra, Michel**Date:**2018**Type:**Text , Journal article**Relation:**Mathematical Programming Vol. 168, no. 1-2 (2018), p. 533-554**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**Our aim in the current article is to extend the developments in Kruger et al. (SIAM J Optim 20(6):3280–3296, 2010. doi:10.1137/100782206) and, more precisely, to characterize, in the Banach space setting, the stability of the local and global error bound property of inequalities determined by lower semicontinuous functions under data perturbations. We propose new concepts of (arbitrary, convex and linear) perturbations of the given function defining the system under consideration, which turn out to be a useful tool in our analysis. The characterizations of error bounds for families of perturbations can be interpreted as estimates of the ‘radius of error bounds’. The definitions and characterizations are illustrated by examples. © 2017, Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society.

A unifying approach to robust convex infinite optimization duality

- Dinh, Nguyen, Goberna, Miguel, López, Marco, Volle, Michel

**Authors:**Dinh, Nguyen , Goberna, Miguel , López, Marco , Volle, Michel**Date:**2017**Type:**Text , Journal article**Relation:**Journal of Optimization Theory and Applications Vol. 174, no. 3 (2017), p. 650-685**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:**false**Reviewed:****Description:**This paper considers an uncertain convex optimization problem, posed in a locally convex decision space with an arbitrary number of uncertain constraints. To this problem, where the uncertainty only affects the constraints, we associate a robust (pessimistic) counterpart and several dual problems. The paper provides corresponding dual variational principles for the robust counterpart in terms of the closed convexity of different associated cones.

Farkas-type results for vector-valued functions with applications

- Dinh, Nguyen, Goberna, Miguel, López, Marco, Mo, T. H.

**Authors:**Dinh, Nguyen , Goberna, Miguel , López, Marco , Mo, T. H.**Date:**2017**Type:**Text , Journal article**Relation:**Journal of Optimization Theory and Applications Vol. 173, no. 2 (2017), p. 357-390**Full Text:****Reviewed:****Description:**The main purpose of this paper consists of providing characterizations of the inclusion of the solution set of a given conic system posed in a real locally convex topological space into a variety of subsets of the same space defined by means of vector-valued functions. These Farkas-type results are used to derive characterizations of the weak solutions of vector optimization problems (including multiobjective and scalar ones), vector variational inequalities, and vector equilibrium problems.

**Authors:**Dinh, Nguyen , Goberna, Miguel , López, Marco , Mo, T. H.**Date:**2017**Type:**Text , Journal article**Relation:**Journal of Optimization Theory and Applications Vol. 173, no. 2 (2017), p. 357-390**Full Text:****Reviewed:****Description:**The main purpose of this paper consists of providing characterizations of the inclusion of the solution set of a given conic system posed in a real locally convex topological space into a variety of subsets of the same space defined by means of vector-valued functions. These Farkas-type results are used to derive characterizations of the weak solutions of vector optimization problems (including multiobjective and scalar ones), vector variational inequalities, and vector equilibrium problems.

Recent contributions to linear semi-infinite optimization

- Goberna, Miguel, López, Marco

**Authors:**Goberna, Miguel , López, Marco**Date:**2017**Type:**Text , Journal article**Relation:**4OR: A Quarterly Journal of Operations Research Vol. 15, no. 3 (2017), p. 221-264**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:**false**Reviewed:****Description:**This paper reviews the state-of-the-art in the theory of deterministic and uncertain linear semi-infinite optimization, presents some numerical approaches to this type of problems, and describes a selection of recent applications in a variety of fields. Extensions to related optimization areas, as convex semi-infinite optimization, linear infinite optimization, and multi-objective linear semi-infinite optimization, are also commented. © 2017, Springer-Verlag GmbH Germany.

Towards supremum-sum subdifferential calculus free of qualification conditions

- Correa, Rafael, Hantoute, Abderrahim, López, Marco

**Authors:**Correa, Rafael , Hantoute, Abderrahim , López, Marco**Date:**2016**Type:**Text , Journal article**Relation:**Siam Journal on Optimization Vol. 26, no. 4 (2016), p. 2219-2234**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**We give a formula for the subdifferential of the sum of two convex functions where one of them is the supremum of an arbitrary family of convex functions. This is carried out under a weak assumption expressing a natural relationship between the lower semicontinuous envelopes of the data functions in the domain of the sum function. We also provide a new rule for the subdifferential of the sum of two convex functions, which uses a strategy of augmenting the involved functions. The main feature of our analysis is that no continuity-type condition is required. Our approach allows us to unify, recover, and extend different results in the recent literature.

**Authors:**Correa, Rafael , Hantoute, Abderrahim , López, Marco**Date:**2016**Type:**Text , Journal article**Relation:**Siam Journal on Optimization Vol. 26, no. 4 (2016), p. 2219-2234**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**We give a formula for the subdifferential of the sum of two convex functions where one of them is the supremum of an arbitrary family of convex functions. This is carried out under a weak assumption expressing a natural relationship between the lower semicontinuous envelopes of the data functions in the domain of the sum function. We also provide a new rule for the subdifferential of the sum of two convex functions, which uses a strategy of augmenting the involved functions. The main feature of our analysis is that no continuity-type condition is required. Our approach allows us to unify, recover, and extend different results in the recent literature.

Calmness modulus of linear semi-infinite programs

- Cánovas, Maria, Kruger, Alexander, López, Marco, Parra, Juan, Théra, Michel

**Authors:**Cánovas, Maria , Kruger, Alexander , López, Marco , Parra, Juan , Théra, Michel**Date:**2014**Type:**Text , Journal article**Relation:**SIAM Journal on Optimization Vol. 24, no. 1 (2014), p. 29-48**Relation:**http://purl.org/au-research/grants/arc/DP110102011**Full Text:****Reviewed:****Description:**Our main goal is to compute or estimate the calmness modulus of the argmin mapping of linear semi-infinite optimization problems under canonical perturbations, i.e., perturbations of the objective function together with continuous perturbations of the right-hand side of the constraint system (with respect to an index ranging in a compact Hausdorff space). Specifically, we provide a lower bound on the calmness modulus for semi-infinite programs with unique optimal solution which turns out to be the exact modulus when the problem is finitely constrained. The relationship between the calmness of the argmin mapping and the same property for the (sub)level set mapping (with respect to the objective function), for semi-infinite programs and without requiring the uniqueness of the nominal solution, is explored, too, providing an upper bound on the calmness modulus of the argmin mapping. When confined to finitely constrained problems, we also provide a computable upper bound as it only relies on the nominal data and parameters, not involving elements in a neighborhood. Illustrative examples are provided.

**Authors:**Cánovas, Maria , Kruger, Alexander , López, Marco , Parra, Juan , Théra, Michel**Date:**2014**Type:**Text , Journal article**Relation:**SIAM Journal on Optimization Vol. 24, no. 1 (2014), p. 29-48**Relation:**http://purl.org/au-research/grants/arc/DP110102011**Full Text:****Reviewed:****Description:**Our main goal is to compute or estimate the calmness modulus of the argmin mapping of linear semi-infinite optimization problems under canonical perturbations, i.e., perturbations of the objective function together with continuous perturbations of the right-hand side of the constraint system (with respect to an index ranging in a compact Hausdorff space). Specifically, we provide a lower bound on the calmness modulus for semi-infinite programs with unique optimal solution which turns out to be the exact modulus when the problem is finitely constrained. The relationship between the calmness of the argmin mapping and the same property for the (sub)level set mapping (with respect to the objective function), for semi-infinite programs and without requiring the uniqueness of the nominal solution, is explored, too, providing an upper bound on the calmness modulus of the argmin mapping. When confined to finitely constrained problems, we also provide a computable upper bound as it only relies on the nominal data and parameters, not involving elements in a neighborhood. Illustrative examples are provided.

Comparative study of RPSALG algorithm for convex semi-infinite programming

- Auslender, Alfred, Ferrer, Albert, Goberna, Miguel, López, Marco

**Authors:**Auslender, Alfred , Ferrer, Albert , Goberna, Miguel , López, Marco**Date:**2014**Type:**Text , Journal article**Relation:**Computational Optimization and Applications Vol. 60, no. 1 (2014), p. 59-87**Full Text:**false**Reviewed:****Description:**The Remez penalty and smoothing algorithm (RPSALG) is a unified framework for penalty and smoothing methods for solving min-max convex semi-infinite programing problems, whose convergence was analyzed in a previous paper of three of the authors. In this paper we consider a partial implementation of RPSALG for solving ordinary convex semi-infinite programming problems. Each iteration of RPSALG involves two types of auxiliary optimization problems: the first one consists of obtaining an approximate solution of some discretized convex problem, while the second one requires to solve a non-convex optimization problem involving the parametric constraints as objective function with the parameter as variable. In this paper we tackle the latter problem with a variant of the cutting angle method called ECAM, a global optimization procedure for solving Lipschitz programming problems. We implement different variants of RPSALG which are compared with the unique publicly available SIP solver, NSIPS, on a battery of test problems.

From the Farkas lemma to the Hahn-Banach theorem

- Dinh, Nguyen, Goberna, Miguel, López, Marco, Mo, T. H.

**Authors:**Dinh, Nguyen , Goberna, Miguel , López, Marco , Mo, T. H.**Date:**2014**Type:**Text , Journal article**Relation:**SIAM Journal on Optimization Vol. 24, no. 2 (2014), p. 678-701**Full Text:****Reviewed:****Description:**This paper provides new versions of the Farkas lemma characterizing those inequalities of the form f(x) â‰¥ 0 which are consequences of a composite convex inequality (S Â° g)(x) â‰¤ 0 on a closed convex subset of a given locally convex topological vector space X, where f is a proper lower semicontinuous convex function defined on X, S is an extended sublinear function, and g is a vector-valued S-convex function. In parallel, associated versions of a stable Farkas lemma, considering arbitrary linear perturbations of f, are also given. These new versions of the Farkas lemma, and their corresponding stable forms, are established under the weakest constraint qualification conditions (the so-called closedness conditions), and they are actually equivalent to each other, as well as quivalent to an extended version of the so-called Hahn-Banach-Lagrange theorem, and its stable version, correspondingly. It is shown that any of them implies analytic and algebraic versions of the Hahn-Banach theorem and the Mazur-Orlicz theorem for extended sublinear functions.

**Authors:**Dinh, Nguyen , Goberna, Miguel , López, Marco , Mo, T. H.**Date:**2014**Type:**Text , Journal article**Relation:**SIAM Journal on Optimization Vol. 24, no. 2 (2014), p. 678-701**Full Text:****Reviewed:****Description:**This paper provides new versions of the Farkas lemma characterizing those inequalities of the form f(x) â‰¥ 0 which are consequences of a composite convex inequality (S Â° g)(x) â‰¤ 0 on a closed convex subset of a given locally convex topological vector space X, where f is a proper lower semicontinuous convex function defined on X, S is an extended sublinear function, and g is a vector-valued S-convex function. In parallel, associated versions of a stable Farkas lemma, considering arbitrary linear perturbations of f, are also given. These new versions of the Farkas lemma, and their corresponding stable forms, are established under the weakest constraint qualification conditions (the so-called closedness conditions), and they are actually equivalent to each other, as well as quivalent to an extended version of the so-called Hahn-Banach-Lagrange theorem, and its stable version, correspondingly. It is shown that any of them implies analytic and algebraic versions of the Hahn-Banach theorem and the Mazur-Orlicz theorem for extended sublinear functions.

Quantitative stability of linear infinite inequality systems under block perturbations with applications to convex systems

- Cánovas, Maria, López, Marco, Mordukhovich, Borris, Parra, Juan

**Authors:**Cánovas, Maria , López, Marco , Mordukhovich, Borris , Parra, Juan**Date:**2012**Type:**Text , Journal article**Relation:**TOP Vol. 20, no. 2 (2012), p. 310-327**Relation:**http://purl.org/au-research/grants/arc/DP110102011**Full Text:****Reviewed:****Description:**The original motivation for this paper was to provide an efficient quantitative analysis of convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional (resp. finite-dimensional) Banach spaces and that are indexed by an arbitrary fixed set J. Parameter perturbations on the right-hand side of the inequalities are required to be merely bounded, and thus the natural parameter space is l∞(J). Our basic strategy consists of linearizing the parameterized convex system via splitting convex inequalities into linear ones by using the Fenchel-Legendre conjugate. This approach yields that arbitrary bounded right-hand side perturbations of the convex system turn on constant-by-blocks perturbations in the linearized system. Based on advanced variational analysis, we derive a precise formula for computing the exact Lipschitzian bound of the feasible solution map of block-perturbed linear systems, which involves only the system's data, and then show that this exact bound agrees with the coderivative norm of the aforementioned mapping. In this way we extend to the convex setting the results of Cánovas et al. (SIAM J. Optim. 20, 1504-1526, 2009) developed for arbitrary perturbations with no block structure in the linear framework under the boundedness assumption on the system's coefficients. The latter boundedness assumption is removed in this paper when the decision space is reflexive. The last section provides the aimed application to the convex case.

**Authors:**Cánovas, Maria , López, Marco , Mordukhovich, Borris , Parra, Juan**Date:**2012**Type:**Text , Journal article**Relation:**TOP Vol. 20, no. 2 (2012), p. 310-327**Relation:**http://purl.org/au-research/grants/arc/DP110102011**Full Text:****Reviewed:****Description:**The original motivation for this paper was to provide an efficient quantitative analysis of convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional (resp. finite-dimensional) Banach spaces and that are indexed by an arbitrary fixed set J. Parameter perturbations on the right-hand side of the inequalities are required to be merely bounded, and thus the natural parameter space is l∞(J). Our basic strategy consists of linearizing the parameterized convex system via splitting convex inequalities into linear ones by using the Fenchel-Legendre conjugate. This approach yields that arbitrary bounded right-hand side perturbations of the convex system turn on constant-by-blocks perturbations in the linearized system. Based on advanced variational analysis, we derive a precise formula for computing the exact Lipschitzian bound of the feasible solution map of block-perturbed linear systems, which involves only the system's data, and then show that this exact bound agrees with the coderivative norm of the aforementioned mapping. In this way we extend to the convex setting the results of Cánovas et al. (SIAM J. Optim. 20, 1504-1526, 2009) developed for arbitrary perturbations with no block structure in the linear framework under the boundedness assumption on the system's coefficients. The latter boundedness assumption is removed in this paper when the decision space is reflexive. The last section provides the aimed application to the convex case.

Stability in linear optimization and related topics. A personal tour

**Authors:**López, Marco**Date:**2012**Type:**Text , Journal article**Relation:**TOP Vol. 20, no. 2 (2012), p. 217-244**Relation:**http://purl.org/au-research/grants/arc/DP110102011**Full Text:**false**Reviewed:****Description:**This paper is a kind of biased survey of the most representative and recent results on stability for the linear optimization problem. Qualitative and quantitative approaches are considered in this survey, and some infinite-dimensional extensions of the main results to more general problems are also included. In particular the paper deals with the lower/upper semicontinuity of the feasible/optimal set mappings, different types of ill-posedness, distance to ill-posedness, Lipschitz properties of these mappings under different types of perturbations, and estimates of the associated Lipschitz bounds.

Stationarity and regularity of infinite collections of sets

- Kruger, Alexander, López, Marco

**Authors:**Kruger, Alexander , López, Marco**Date:**2012**Type:**Text , Journal article**Relation:**Journal of Optimization Theory and Applications Vol. 154, no. 2 (2012), p. 339-369**Relation:**http://purl.org/au-research/grants/arc/DP110102011**Full Text:****Reviewed:****Description:**This article investigates extremality, stationarity, and regularity properties of infinite collections of sets in Banach spaces. Our approach strongly relies on the machinery developed for finite collections. When dealing with an infinite collection of sets, we examine the behavior of its finite subcollections. This allows us to establish certain primal-dual relationships between the stationarity/regularity properties some of which can be interpreted as extensions of the Extremal principle. Stationarity criteria developed in the article are applied to proving intersection rules for Fréchet normals to infinite intersections of sets in Asplund spaces. © 2012 Springer Science+Business Media, LLC.

**Authors:**Kruger, Alexander , López, Marco**Date:**2012**Type:**Text , Journal article**Relation:**Journal of Optimization Theory and Applications Vol. 154, no. 2 (2012), p. 339-369**Relation:**http://purl.org/au-research/grants/arc/DP110102011**Full Text:****Reviewed:****Description:**This article investigates extremality, stationarity, and regularity properties of infinite collections of sets in Banach spaces. Our approach strongly relies on the machinery developed for finite collections. When dealing with an infinite collection of sets, we examine the behavior of its finite subcollections. This allows us to establish certain primal-dual relationships between the stationarity/regularity properties some of which can be interpreted as extensions of the Extremal principle. Stationarity criteria developed in the article are applied to proving intersection rules for Fréchet normals to infinite intersections of sets in Asplund spaces. © 2012 Springer Science+Business Media, LLC.

Stationarity and Regularity of Infinite Collections of Sets. Applications to Infinitely Constrained Optimization

- Kruger, Alexander, López, Marco

**Authors:**Kruger, Alexander , López, Marco**Date:**2012**Type:**Text , Journal article**Relation:**Journal of Optimization Theory and Applications Vol. 155, no. 2 (2012), p. 390-416**Relation:**http://purl.org/au-research/grants/arc/DP110102011**Full Text:****Reviewed:****Description:**This article continues the investigation of stationarity and regularity properties of infinite collections of sets in a Banach space started in Kruger and López (J. Optim. Theory Appl. 154(2), 2012), and is mainly focused on the application of the stationarity criteria to infinitely constrained optimization problems. We consider several settings of optimization problems which involve (explicitly or implicitly) infinite collections of sets and deduce for them necessary conditions characterizing stationarity in terms of dual space elements-normals and/or subdifferentials.

**Authors:**Kruger, Alexander , López, Marco**Date:**2012**Type:**Text , Journal article**Relation:**Journal of Optimization Theory and Applications Vol. 155, no. 2 (2012), p. 390-416**Relation:**http://purl.org/au-research/grants/arc/DP110102011**Full Text:****Reviewed:****Description:**This article continues the investigation of stationarity and regularity properties of infinite collections of sets in a Banach space started in Kruger and López (J. Optim. Theory Appl. 154(2), 2012), and is mainly focused on the application of the stationarity criteria to infinitely constrained optimization problems. We consider several settings of optimization problems which involve (explicitly or implicitly) infinite collections of sets and deduce for them necessary conditions characterizing stationarity in terms of dual space elements-normals and/or subdifferentials.

**Authors:**López, Marco , Volle, Michel**Date:**2012**Type:**Text , Journal article**Relation:**Journal of Mathematical Analysis and Applications Vol. 390, no. 1 (2012), p. 307-312**Relation:**http://purl.org/au-research/grants/arc/DP110102011**Full Text:**false**Reviewed:****Description:**In this paper we approach the study of the subdifferential of the closed convex hull of a function and the related integration problem without the usual assumption of epi-pointedness. The key tool is, as in Hiriart-Urruty et al. (2011) [7], the concept of ε-subdifferential. Some other assumptions which are standard in the literature are also removed.

- Cánovas, Maria, López, Marco, Parra, Juan, Toledoa, Javier

**Authors:**Cánovas, Maria , López, Marco , Parra, Juan , Toledoa, Javier**Date:**2011**Type:**Text , Journal article**Relation:**Optimization Vol. 60, no. 7 (2011), p. 925-946**Relation:**http://purl.org/au-research/grants/arc/DP110102011**Full Text:**false**Reviewed:****Description:**This article extends some results of Cá novas et al. [M.J. Cá novas, M.A. Ló pez, J. Parra, and F.J. Toledo, Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems, Math. Prog. Ser. A 103 (2005), pp. 95-126.] about distance to ill-posedness (feasibility/ infeasibility) in three directions: From individual perturbations of inequalities to perturbations by blocks, from linear to convex inequalities and from finite- to infinite-dimensional (Banach) spaces of variables. The second of the referred directions, developed in the finite-dimensional case, was the original motivation of this article. In fact, after linearizing a convex system via the Fenchel-Legendre conjugate, affine perturbations of convex inequalities translate into block perturbations of the corresponding linearized system. We discuss the key role played by constant perturbations as an extreme case of block perturbations. We emphasize the fact that constant perturbations are enough to compute the distance to ill-posedness in the infinite-dimensional setting, as shown in the last part of this article, where some remarkable differences of infinite- versus finite-dimensional systems are presented. Throughout this article, the set indexing the constraints is arbitrary, with no topological structure. Accordingly, the functional dependence of the system coefficients on the index has no qualification at all.

Stability of semi-infinite inequality systems involving min-type functions

- López, Marco, Rubinov, Alex, Vera De Serio, Virginia

**Authors:**López, Marco , Rubinov, Alex , Vera De Serio, Virginia**Date:**2005**Type:**Text , Journal article**Relation:**Numerical Functional Analysis and Optimization Vol. 26, no. 1 (2005), p. 81-112**Full Text:**false**Reviewed:****Description:**We study the stability of semi-infinite inequality systems that arise in monotonic analysis. These systems are defined by certain classes of abstract linear functions. We consider the cone R**Description:**C1**Description:**2003001420

Stability of the lower level sets of ICAR functions

- López, Marco, Rubinov, Alex, Vera De Serio, Virginia

**Authors:**López, Marco , Rubinov, Alex , Vera De Serio, Virginia**Date:**2005**Type:**Text , Journal article**Relation:**Numerical Functional Analysis and Optimization Vol. 26, no. 1 (2005), p. 113-127**Full Text:**false**Reviewed:****Description:**In this paper, we study the stability of the lower level set {x E R++n | f (x) ≤ 0} of a finite valued increasing convex-along-rays (ICAR) function f defined on R++n. In monotonic analysis, ICAR functions play the role of usual convex functions in classical convex analysis. We show that each ICAR function f is locally Lipschitz on int dom f and that the pointwise convergence of a sequence of ICAR functions implies its uniform convergence on each compact subset of R ++n. The latter allows us to establish stability results for ICAR functions in some sense similar to those for convex functions. Copyright © Taylor & Francis, Inc.**Description:**C1**Description:**2003001419

- «
- ‹
- 1
- ›
- »

Are you sure you would like to clear your session, including search history and login status?