Objects
Sukhorukova, Nadezda, Stranieri, Andrew, Ofoghi, Bahadorreza, Vamplew, Peter, Saleem, Muhammad Saad, Ma, Liping, Ugon, Adrien, Ugon, Julien, Muecke, Nial, Amiel, Hélène, Philippe, Carole, Bani-Mustafa, Ahmed, Huda, Shamsul, Bertoli, Marcello, Levy, P, Ganascia, J.G. Brisbane Australian Computer Society; 2010. Automatic sleep stage identification: difficulties and possible solutions.
Vamplew, Peter, Smith, Benjamin, Källström, Johan, Ramos, Gabriel, Rădulescu, Roxana, Roijers, Diederik, Hayes, Conor, Heintz, Fredrik, Mannion, Patrick, Libin, Pieter, Dazeley, Richard, Foale, Cameron. Springer; 2022. Scalar reward is not enough : a response to Silver, Singh, Precup and Sutton (2021).
Vamplew, Peter, Smith, Benjamin, Källström, Johan, Ramos, Gabriel, Rădulescu, Roxana, Roijers, Diederik, Hayes, Conor, Heintz, Fredrik, Mannion, Patrick, Libin, Pieter, Dazeley, Richard, Foale, Cameron. International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS); 2023. Scalar reward is not enough JAAMAS Track.
Vamplew, Peter, Foale, Cameron, Hayes, Conor, Mannion, Patrick, Howley, Enda, Dazeley, Richard, Johnson, Scott, Källström, Johan, Ramos, Gabriel, Rădulescu, Roxana, Röpke, Willem, Roijers, Diederik. International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS); 2024. Utility-based reinforcement learning : unifying single-objective and multi-objective reinforcement learning.
Hayes, Conor, Bargiacchi, Eugenio, Källström, Johan, Macfarlane, Matthew, Reymond, Mathieu, Verstraeten, Timothy, Zintgraf, Luisa, Dazeley, Richard, Heintz, Fredrik, Howley, Enda, Irissappane, Athirai, Mannion, Patrick, Nowé, Ann, Ramos, Gabriel, Restelli, Marcello, Vamplew, Peter, Roijers, Diederik. International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS); 2023. A brief guide to multi-objective reinforcement learning and planning JAAMAS track.
Hayes, Conor, Rădulescu, Roxana, Bargiacchi, Eugenio, Källström, Johan, Macfarlane, Matthew, Reymond, Mathieu, Verstraeten, Timothy, Zintgraf, Luisa, Dazeley, Richard, Heintz, Fredrik, Howley, Enda, Irissappane, Athirai, Mannion, Patrick, Nowé, Ann, Ramos, Gabriel, Restelli, Marcello, Vamplew, Peter, Roijers, Diederik. Springer; 2022. A practical guide to multi-objective reinforcement learning and planning.