
An Anti-Plagiarism Editor for Software Development Courses

Peter Vamplew and Julian Dermoudy
School of Computing

University of Tasmania
Private Bag 100, Hobart 7001, Tasmania

Peter.Vamplew@utas.edu.au

Julian.Dermoudy@utas.edu.au

Abstract

Plagiarism is a serious issue in undergraduate computer
science courses involving assessment of programming
assignments. The electronic nature of these assignments
means copying others' work is very easy, and the lack of
variation between legitimately independent solutions
makes the detection of plagiarised solutions difficult. The
primary tool in combating plagiarism should be education
of students about the issue. The need still exists however,
for means to detect plagiarism when it does occur, and
automated tools can provide valuable assistance in this
task. Most such tools developed so far have focused on
analysing the content of the final work submitted by
students.1

In contrast this paper describes an anti-plagiarism
approach based on consideration of the entire process of
producing the submitted source-code, rather than just the
source-code itself. It describes a text editor and related
software which have been implemented based on the
Eclipse development environment. These tools aim to
discourage plagiarism by making the copying process
more labour-intensive, and to aid in detection by storing
data about document creation along with the document
content.

Keywords: Plagiarism, computer science education,
programming.

1 Introduction

Plagiarism by students is a serious and widespread
educational issue. Stokes and Newstead (1995) found that
64% of students reported having knowingly copied work
at least once during their University studies, whilst
Sheard, Dick, Markham, Macdonald and Walsh (2002)
state that several recent studies have reported admissions
of academic misconduct from around 90% of students.
Within individual units and pieces of assessment, several
authors report plagiarism rates on the order of 10% to
30% (Zobel and Hamilton (2002), Culwin, MacLeod and
Lancaster (2001), Wagner (2000)).

1Copyright (c) 2005, Australian Computer Society, Inc. This
paper appeared at the Australasian Computing Education
Conference 2005, Newcastle, Australia. Conferences in
Research and Practice in Information Technology, Vol. 42.
Alison Young and Denise Tolhurst, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

The causes of plagiarism have been widely investigated
(Sheard et al. (2002), Sheard, Carbone and Dick (2003),
Wagner (2000), Zobel and Hamilton (2002)). A detailed
discussion of these causes is beyond the scope of this
paper, but some of the most commonly reported causes
are:

• a lack of time to undertake the assessment task;

• fear of failure, or the costs of failure;

• assessment tasks which are too difficult for the
student's current skill level;

• inadequate resources (hardware, software,
library, access to teaching staff, etc.);

• perceived irrelevance or lack of educational
merit of the assessment task.

If plagiarised submissions for assessment tasks are not
detected and penalised, the efforts of those students who
complete these tasks legitimately are devalued. In
addition assessment exercises are usually also intended to
act as formative learning opportunities for students —
clearly students who plagiarise all or parts of their
assignments learn less than they would from undertaking
the work themselves. Zobel (2004) suggest that students
who cheat in the hope of catching up later may become
caught in a "cycle of plagiarism", as they never develop
the skills required to carry out the assessment exercises
independently.

The statistics available on detection of plagiarism
however are in stark contrast to those on its incidence -
Culwin et al. (2001) reported that an average of 5% of
students were caught plagiarising in a year, implying that
a significant amount of plagiarism is currently undetected
and therefore unrectified.

There are two main forms of plagiarism — either students
re-use material from external sources without suitable
acknowledgement, or they copy all or part of another
student's work, with or without the permission of that
student. Whilst the first form is likely to be a significant
issue in essay-based assignments, the latter is more
common within programming units. A third possibility
also exists — that of a student paying a third party to
undertake the assessment task for them. Zobel (2004)
reports a case of this form, and suggests it may be more
common than previously thought.

Two aspects of programming units pose particular
problems from the point of view of discouraging and
detecting plagiarism.

First, the electronic nature of the material being produced
by students makes plagiarism particularly easy to
undertake. Material can be copied with practically no
effort either by directly copying a file, or by cutting-and-
pasting source code from one file to another. Subsequent
minor editing such as changing identifier names,
rephrasing comments, altering the use of whitespace and
indentation, or modifying the structure by re-arranging
sections of the code, is often used to attempt to disguise
the origins of the code.

The second difficulty lies in the detection of plagiarised
assignments. The constraints of programming languages
compared to natural languages mean that solutions to
programming tasks are likely to display a high degree of
similarity, even if they have been developed
independently. Anecdotally this means that if the
detection of copied code is based on manual inspection,
plagiarism is more likely to be detected when this code is
a poor solution to the task, as weaker solutions are more
likely to contain distinctive features. Wagner (2000) notes
that such unusual features are often seen as "a smoking
gun" — conclusive evidence of the occurrence of
copying. Therefore those students who are benefiting the
most by obtaining higher marks from copying good
solutions are also more likely to escape punishment.

The detection of plagiarism is also affected by non-
technical factors such as the changing structure of tertiary
education. Developments such as increased class sizes
and cross-campus teaching of units may make the use of
multiple markers more common. This reduces the
likelihood of plagiarism being detected by manual means
as each marker only sees a subset of the submissions.

2 Plagiarism Prevention and Detection

The approaches to minimising the incidence and impact
of plagiarism fall into two complementary categories —
preventing plagiarism from occurring, and detecting cases
of plagiarism when the preventative measures fail.

2.1 Educational approaches to plagiarism

Several authors have suggested guidelines for units which
are aimed at reducing both the need and the opportunity
for students to engage in plagiarism. This section
summarises some of the most common recommendations.

Ethics education, warnings and penalties

Clearly plagiarism and similar unethical actions are
undesirable in the broader world outside of university
study, as well as within academia. Therefore the primary
action in combating plagiarism should be educating
students about the nature of plagiarism, and the reasons
why it is unacceptable. This process should also help to
address differing attitudes to plagiarism which may exist
between students from different cultures.

There also need to be clearly specified policies for the
treatment of plagiarism once detected, including the
penalties which will be incurred. Zobel (2004) argues that
deterrent policies are only likely to be effective if
students perceive that plagiarism is likely to be detected.
This is supported by the results of Braumoeller and

Gaines' (2001) comparative study of two groups of
political science students. One group was provided with a
strong written and verbal warning about plagiarism prior
to writing a paper, whilst the second group was informed
that their papers would be checked by plagiarism
detection software The study found that the formal
warning had "no discernable deterrent effect" whilst the
announcement about the use of plagiarism detection
software had a significant impact on the levels of
plagiarism amongst the second group. Similarly,
Weinstein and Dobkin (2002) reported a significant —
although not total — reduction in the incidence of
plagiarism in a class where the use of plagiarism-
detection software was publicised compared to a control
class where the use of this software was not announced to
the students.

Coursework design

Sheard et al. (2003) report that in many cases students
report that plagiarism arises from lack of motivation due
to a perceived lack of educational value in the work being
carried out, or due to frustration with poorly designed or
under-resourced tasks. Poorly designed assessment items
can increase both the motivation of a student to cheat, and
the ease with which this can be achieved. To avoid this
coursework should be interesting, constructively aligned
with the objectives of the course, of a suitable level of
difficulty, and timed to avoid imposing excessive
workloads at the end of semester. Assignment exercises
should be changed from year-to-year to avoid the re-use
of solutions from previous years, and should contain
unique elements to impede the inclusion of generic code
from online sources.

Additional assessment

One means of verifying the results of programming
assignments is to additionally assess the programming
expertise of students via some other means. Options
include supervised programming exercises in laboratories
(Zobel and Hamilton (2002)), interviewing students about
the workings of their code (Culwin et al. (2001), Sheard
et al. (2002)), and including programming tasks within
examinations (Wagner 2000).

Incremental submission

Many computer science departments now require students
to regularly submit draft submissions, or automatically
generate an 'audit trail' based on students submission of
files to the compiler (Wagner 2000). This material may
provide useful insight in cases where plagiarism is
suspected to have occurred. This approach to reducing
plagiarism by monitoring the development process is
closely aligned with the techniques proposed in this
paper.

2.2 Technological approaches to plagiarism

An alternative to relying on the observational abilities of
markers as the sole means of identifying cases of copying
is to make use of automated or semi-automated software
tools. These tools perform some analysis of the files
submitted by students, and identify to the marker which
of the files are most likely to have been generated via

plagiarism. They may also provide other information such
a numerical measurement of the likelihood that
plagiarism was involved in a particular submission, and
the possible source of plagiarised material.

2.2.1 Content-based file comparison

These software tools operate by performing comparisons
of the content of all the submitted files, either against
each other or against alternative sources of material such
as online resources. Some systems may apply linguistic
techniques, looking for inconsistencies in the style of
language used within a single submission as possible
evidence of the material being written by multiple
authors.

A variety of software tools based on these concepts are
available, either for free or as commercial services. These
tools also differ in whether they run as standalone
applications on a local machine, or whether they require
files to be uploaded to a remote host via a web-site.

The strength of the latter approach (as exemplified by
websites such as turnitin.com (Turnitin (2004)) is the
large and continually expanding database of papers they
retain for future comparisons. One of the reasons these
sites require the uploading of all files to be tested is so
those files can themselves be added to the site's database.
These tools are particularly well suited to identifying
papers which have been plagiarised in part or in whole
from online 'paper-mills': a growing number of web-sites
which offer papers on a wide range of academic topics —
again either for free or at a cost.

This content-based approach to plagiarism detection is
best suited for essays, as the likelihood of two
independently derived submissions containing large
sections of identical text is low. Cases of plagiarism
would thus stand out from the other assignments.

Hughes, Brown, Jakobson, Philpot, Dwight-Moore,
Jarret, Grainger and Short (2002) assessed the CopyCatch
software package for possible use within the University
of East London. CopyCatch uses linguistic techniques to
analyse a file's use of 'lexical words' (those words whose
usage would be expected to vary between different
authors). The study found that CopyCatch's performance
was less effective in a problem domain which was
technical in nature and in which similarities between
student papers would be expected to occur; papers which
were reported as having high similarity measures were
later found not to be copied when examined by a human
marker.

It is to be expected that these problems would be
increasingly manifest when comparing student programs,
due to the highly restricted nature of programming
language vocabulary and structure compared to that of
natural language. In this case it would be expected that
most assignments would display quite high similarity
measures. Hence distinguishing cases of plagiarism from
this background level of expected similarity would
require both increased effort and superior judgement on
the part of the marker. Our experience with the use of the

turnitin software for analysis of student programs bears
out this expectation.

2.2.2 Content-based comparison of source code

There is a long history of development of software tools
for determining the similarity of pieces of source code,
dating back at least to Ottenstein (1976). Most early tools
were based on various software metrics such as counts of
the number of occurrences of particular operations. These
metrics are only loosely related to the actual functionality
of the code being examined, and as such had only limited
success in the detection of plagiarised code.

Superior systems have more recently been developed
which are based on analysis of the underlying structure of
the code. Perhaps the two best-known and most widely
used systems are JPlag (Prechelt, Malpohl and Philippsen
(2002)) and Measure of Software Similarity (MOSS)
(Aiken (2004), Schleimer, Wilkerson and Aiken (2003)).
These parse the source code, tokenising it, and then apply
comparison algorithms to the tokenised form of the code.
They exhibit high levels of robustness to attempts to
disguise plagiarism by discarding aspects of the code
which are frequently edited post-copying such as white-
space, comments and identifier names.

Chen, Francia, Li, Mckinnon and Seker (2004) however
demonstrate that both JPlag and MOSS are susceptible to
attempts to disguise code by adding extraneous lines
which do not affect the function of the program. They
propose an alternative comparison technique, inspired by
those used in bioinformatics, which is less sensitive to
this form of deception.

3 An Anti-Plagiarism Editor: Key Features

We endorse the view of Zobel and Hamilton (2002) that
there is no 'magic bullet' in combating plagiarism. The
most effective processes will be those which attack
plagiarism from multiple perspectives using a number of
complementary techniques. Thus the anti-plagiarism
software described in this paper takes a significantly
different approach from the systems described in the
previous section.

We have developed a two-tiered approach: one which
monitors the student's actions during the development of
their submitted work, and one which audits the work after
its submission. This is in contrast to the majority of
existing plagiarism-detection systems which examine
only the content of the submitted work, ignoring the
process involved in its creation.

This approach of monitoring the file-creation process has
some similarities to PowerResearcher - a commercial
software package developed by Uniting Networks
(Beasley 2004). PowerResearcher provides a research
development environment which integrates many of the
features required for research or coursework. It acts to
reduce the incidence of plagiarism by providing tools to
increase student productivity (thereby reducing the
demands on student time which are often cited as a reason
for plagiarism), and to aid in the automatic tracking and
citation of sources of information, thereby reducing the

risk of accidental plagiarism. In addition, it aids in the
detection of plagiarism by monitoring student research
activity and maintaining time-based logs of the student's
actions. These logs can be reviewed by academic staff
members to ensure that they are consistent with the work
actually submitted by the student.

The concept of monitoring the actual creation of the
submitted work rather than simply examining the end-
product is common to both PowerResearcher and our
system. The primary difference is that PowerResearcher
has a more general focus on supporting research activity
(particularly the production of written work such as
essays and reports), whilst our system is specifically
designed for tasks involving the creation of source-code.

The key component of our system is a specialised text
editor (the Anti-Plagiarism Editor or APE) whose use is
mandatory for students in developing their programs.
This editor incorporates features which firstly discourage
plagiarism by preventing the lowest-effort forms of
copying, and secondly aid in the detection of copied work
through the inclusion of additional information about the
code creation process along with the source code in the
file to be submitted.

A second software component (which has been named
Gorilla) is used by the marker to compare the students'
submissions on the basis of this additional information.
Gorilla is applied to a batch containing all student
submissions, and performs pair-wise comparisons of
these files. It has been shown through initial trials to
conclusively detect files which have been produced via
copying without any need for subjective judgement on the
part of the marker, or any need for collaboration in the
case of multiple markers.

The main aspects of the these two software components
will now be presented.

3.1 File identification data

The key to the plagiarism detection capability of this
software is the additional data stored whenever a file is
saved. A file consists of the verbatim text created by the
student within the editor (the source code of their
program), together with header information related to the
creation of the file. This header facilitates the
identification of files which have been electronically
copied from a common origin even if they have been the
subject of later editing.

Various possibilities could be employed for this header
data. The current implementation of APE maintains a
record of the system clock time whenever the file is saved
and appends a complete list of this information to the
source code when saving. If this file is copied and
subsequently edited, the lists of save times of the two
files will be identical up to the point where the copy took
place, enabling their common origins to be detected by
Gorilla.

Obviously the inclusion of any additional data in the
saved file will interfere with the processing of that file as
source code by a compiler or interpreter. Two
possibilities exist to address this issue.

One approach is to simultaneously save two different
versions of the file — one containing just the source code
for compilation purposes, and a second with both the
source code and the header data. This approach
introduces several complications — the existence of, and
the consequential need to submit, two files is likely to
confuse students (particularly at first-year level), and
would impose additional work on Gorilla to perform
initial checking to ensure that the source code in the two
files was identical before carrying out any further
analysis.

A simpler alternative, and the approach used in the
current version of APE, is to store the identification data
in the form of comments at the start or end of the code.
This simplifies the submission and testing processes, but
requires APE to be cognisant of the programming
language used for the source code so as to be able to use
the correct commenting syntax.

Note that in some cases a file may be distributed to
students as a starting point for their solution — to support
this Gorilla provides a facility whereby the marker can
specify that the header information inherited from a
specified file is not to be considered when comparing
student files.

3.2 File authentication

In order to be compatible with compiler/translator
systems APE produces plain text files. As the file
identification data is clearly visible and editable within
these files, the possibility exists for students to alter this
data within another editor after copying the original APE
file and hence bypass Gorilla's file comparisons.

The solution to this issue is two-fold: to encrypt this data
and to include authentication codes in the text file. These
authentication codes are based on both the source code
and the file identification data. Whenever a file is loaded
into either APE or Gorilla, the file's contents are used to
generate an authentication code which is compared to that
stored in the file. Any mismatch in these codes indicates
that the file has been modified using an editor other than
APE — if this occurs within APE an error message will
be reported and the file will not be loaded into the editor.
In Gorilla, in such a case the file will be brought to the
immediate attention of the marker.

3.3 Restricted copy-and-paste facilities

The combination of file identification and authentication
features effectively eliminates the easiest form of
plagiarism — namely, direct copying of a file. Another
simple plagiarism technique is, however, still available —
the transferring of text from one file to another via a
copy-and-paste operation. Therefore, it is necessary to
prevent the importing of text into APE from another
program (such as a web browser, email program or
another text-editor), or the transfer of text from one file to
another via copying-and-pasting between different editor
windows within the APE application.

This could be achieved by not providing any copy and
paste options within APE, but that would be undesirable

since APE should still support these operations within its
own text-editing area for flexibility and efficiency of use.
The solution chosen is to equip each window within APE
with its own internal clipboard, and to source all paste
operations from this local clipboard rather than on the
system clipboard used by other applications.

It is then both safe and desirable to allow APE to export
text to other applications. This would allow students to
copy and paste part of their program into a text message
when querying a lecturer via email rather than having to
transmit their entire code file as an attachment. This
feature is achieved by defining the copy operation within
APE to copy the currently selected text to both the
internal and system clipboards.

3.4 Summary

With these three key features, the APE/Gorilla software
ensures that any attempt to plagiarise code via the forms
of least-effort (file copying, and copy-and-paste) will be
either impossible to perform or guaranteed to be detected.

A third alternative method of plagiarism is still available
to students — that of manually re-typing the code to be
copied. Restricting students to this option significantly
increases the amount of work required to copy code and
therefore should make plagiarism a less attractive option
for many students.

The continued existence of this means of plagiarism
means that the basic form of Gorilla cannot be used as the
sole means of plagiarism detection. Some form of
content-based analysis will still be required — either
manual, via one of the software systems described in
Section 2, or implemented in a future revision of Gorilla.

4 Implementation issues

The implementation of the APE and Gorilla tools
required many decisions to be made, relating to both
technical issues and the manner in which these tools will
be deployed.

4.1 Integrating APE into current teaching

It is vital that the adoption of anti-plagiarism tools should
not be at the expense of student's educational experience.
Therefore APE should provide at least the same level of
functionality from a student perspective as the alternative
editors which are currently being used.

For this reason APE is based on the Eclipse development
environment developed by the Eclipse Foundation, a
consortium of computer industry bodies, including IBM
(Eclipse Foundation, 2004). Eclipse is an open-source
project released under the Common Public License,
aimed at creating an industry quality integrated software
development environment. Basing APE on Eclipse
provides immediate support for advanced development
environment functionality such as syntax highlighting,
automatic indentation, search-and-replace operations and
debugging support. Eclipse is also based on a plug-in
architecture, which aided in integrating APE's required
functionality into the existing Eclipse structure.

The functionality provided by Eclipse is comparable or
superior to that of the existing editors used in many units
where APE is planned to be introduced. Eclipse is also
expected to be widely adopted in industry, and therefore
students gain the additional benefit of being exposed to a
tool which they may well be required to work with post-
graduation.

4.2 File identification and authentication data

As discussed later in Section 6.2, the possibility exists for
the extension of the functionality of APE and Gorilla in
the future by including additional items in the file
identification data. To support this future extension the
format used to represent this data within APE files is
based on an XML schema (Bray, Paoli, Sperberg-
McQueen, Maler and Yergeau (2004)), rather than a
simpler, unstructured representation. In this way any
future additions to the data being gathered can be added
as optional tags within this schema, thereby ensuring
backwards compatibility between future versions of
Gorilla and earlier releases of APE.

The file identification data is used as the input to an
algorithm which both encrypts the data and generates an
authentication code, which is appended to the encrypted
data. The details of the encryption and authentication
algorithm are deliberately left obscure both here and in
the code release of APE, so as to maximise the difficulty
for any dedicated plagiarist attempting to subvert this
aspect of APE. Suffice it to say that APE uses third-party
encryption code which has been rigorously tested, and
which provides a level of encryption based on a key-size
large enough to make APE secure from anything short of
a concerted attack.

The encrypted data and authentication code are binary in
nature and therefore cannot be directly written to the text
files produced by APE. Therefore this data is piped
through an ASCII converter prior to being written to file.

Figures 1 to 3 illustrate various views of a file produced
by APE. Figure 1 shows the actual content of the file, as
it would be displayed if it was opened in a generic text
editor. The series of comments preceding the source code
contains the encrypted, ASCII-converted header data.

Figure 1: A sample text-file produced using APE,
showing the encrypted header information embedded in

comments at the start of the file

Figure 2 is a screenshot from APE, showing that the
header information is not displayed within this view.

Figure 2: The same file as in Figure 1, as it would be
displayed when loaded in APE.

Finally Figure 3 shows the decrypted header information
as it would be displayed to a marker using Gorilla. It can
be seen from the left-hand pane that this particular file
has been saved twice. The details of the first of these save
operations is displayed in the right-hand pane.

Figure 3: The same file as in Figures 1 and 2, as it would
be displayed when loaded in Gorilla.

5 The role of APE and Gorilla

APE and Gorilla are not intended to be the sole approach
to minimising plagiarism, but instead merely an
additional component within the School of Computing's
existing structure.

The School's current approach can be characterised as
consisting of three stages:

• educating students about the nature and
unacceptability of plagiarism;

• making the cost/benefit ratio of plagiarism less
attractive to students; and

• detecting and punishing cases of plagiarism
when they do occur, according to the
University's Ordinances and Rules.

5.1 Student Education

Education of students forms the first stage in combating
plagiarism, with the aim of deterring plagiarism from
occurring rather than catching it after it has taken place.
As part of a University-wide policy, all students enrolling
in each unit are provided with a Unit Handout at the start
of the semester. As well as detailing course content,
assessment details and assignment deadlines, this handout
includes a discussion of plagiarism. It explains what
actions are regarded as constituting plagiarism, why these
actions are unacceptable, and the possible penalties for
students who indulge in these activities.

In addition, it is required that every piece of work
submitted for assessment is accompanied by a signed
cover sheet attesting that the submission is entirely the
work of the individual or group making the submission.
Assignments submitted without a signed cover sheet will
not be marked. This acts to remind students of the
seriousness with which plagiarism is treated.

As mentioned earlier, Braumoeller and Gaines (2001)
found that warnings had little impact on student
behaviour unless backed up by a reasonable expectation
that plagiarism would be detected. Therefore the simple
act of notifying students of the adoption of APE and
outlining its basic functioning may serve as a more
significant deterrent to plagiarism than the current unit
handouts and cover sheets.

5.2 Reducing benefits and increasing costs of
plagiarism

Regardless of the underlying factors leading to
plagiarism, the final decision to plagiarise is in order to
achieve a higher mark than would be obtained by
applying the same amount of effort legitimately.
Therefore, the incidence of plagiarism should be reduced
if either the benefits to be obtained from it are reduced, or
if the amount of effort required is increased.

The primary means of reducing the potential benefits of
plagiarism is to reduce the contribution of assignments to
the final grade for the unit. It would be expected that
students who cheat on the assignment will learn less as a
result, and therefore will be more likely to fail the exam.
This line of reasoning is emphasised to students at the
start of courses as a disincentive to engage in plagiarism.

As discussed in Section 3.4, APE complements this
approach by substantially increasing the amount of effort
required to carry out plagiarism. With no means of
electronically copying code without being detected,
plagiarists will be forced to re-type any code which they
wish to copy.

5.3 Detection and punishment

The School's current approach to detecting plagiarism
relies mainly on manual detection by markers, although
the increased use of multiple markers has lead some
lecturers to experiment with content-based plagiarism
detection tools such as turnitin.

The University statutes dictate the disciplinary action to
be taken once an act of plagiarism is detected. The most
common penalty is the loss of some or all of the marks
which would otherwise have been achieved for the
assignment. Penalties of greater severity are available for
more serious offences or for repeat offenders.

In theory Gorilla's role would be to detect any cases of
plagiarism which have resulted from direct copying of
files. In practice however, given that the outline of APE
and Gorilla's operation will have been explained to the
class prior to the assignment, it is anticipated that very
few students will be foolish or desperate enough to still
carry out such actions. Therefore Gorilla's impact will be
largely via its influence on student behaviour rather than
its actual detection capabilities (this raises the interesting
question as to whether plagiarism detection software
actually has to fulfil its specifications, or indeed exist at
all, in order to be an effective deterrent). This deterrent
effect is of course the preferred option — to prevent
plagiarism from being carried out in the first place rather
than to detect it only after it has occurred.

In terms of disciplinary action, Gorilla's only impact
would be if the file identification data allowed the
original author of the submitted material to be identified,
as discussed below in Section 6.2. This may then have
some influence on the penalties assigned to the parties
involved in the case. Such information is readily available
under many operating systems and may easily be
incorporated in future revisions of APE.

6 Future work

6.1 Assessing APE and Gorilla

Now that initial, ex situ trials have been completed
successfully, APE can be deployed for classroom
evaluation. The software will be trialled in the third-year
unit Knowledge-Based Systems in the first semester of
2005. The trial will examine APE's comparative ability to
detect plagiarism in competition with other techniques
such as manual inspection of assignments and tools such
as JPlag and MOSS. It will also assess APE's effect on
student behaviour and its level of acceptance by students.

The first aspect of the trial will be achieved using a
methodology similar to that of Prechelt et al. (2002). The
actual submissions made by students will be augmented
by the creation of additional submissions produced by
copying some randomly selected genuine submissions,
and applying the code disguising techniques commonly
observed in plagiarised assignments, as well as
techniques designed to circumvent Gorilla's testing
process. All submissions will then be distributed to the
markers, and the usual assessment practice will be
followed. In addition the files will also be submitted to
the JPlag and MOSS tools, and processed via Gorilla. A
comparison will be made between the ability of these
various techniques to detect plagiarised files, both those
which were seeded and any (unknown) genuine cases.

The impact on student behaviour will be assessed via a
pair of anonymous surveys of students, conducted at the
commencement and the end of the unit. The first survey

will address student attitudes to plagiarism, in a manner
similar to the surveys performed by Sheard et al. (2002,
2003). It will also measure students' perception of the
likelihood that various forms of plagiarism would be
detected. This survey will be conducted prior to making
students aware of the existence and functionality of APE
and Gorilla. The follow-up survey will be conducted at
the end of the unit, after students have experienced using
APE. It will measure any changes in students' attitude to
plagiarism since the first survey, and will also assess their
opinion of the APE tool itself.

6.2 Extending functionality

The most obvious extension to Gorilla would be to
implement content-based analysis of the submission files,
so as to complete its plagiarism detection capabilities.
This could be achieved by linking Gorilla to the existing
JPlag code or integrating it with a Web-based detection
service rather than re-implementing this functionality.

Another advanced capability would be to incorporate into
the file further details about the process involved in
creating the file. Gorilla could then analyse this
information to identify files which are more likely to have
been produced via plagiarism as indicated by the
behaviour of the user in creating them. For example
unusually frequent use of the search-and-replace facilities
(particularly late in the creation of the file) may indicate
changing of variable names to reduce the similarity to the
file from which this code was copied. Similarly an
unusually sequential creation of the file may indicate a
file being re-typed from a printout of another student's
code. These behavioural signatures alone would not be
sufficient evidence to prove plagiarism, but they could be
used to flag some files as being worthy of closer attention
by the marker.

One means of supporting this form of analysis would be
to more closely capture the relationship between the
source code and the save times, by storing the source
code in terms of the modifications made since the
previous save. In this way the contents of the code at each
save point could be reconstructed, which would allow a
comparison to be made of the two files at their point of
divergence, to establish exactly how much of the code
content was plagiarised. The major issue to be resolved is
how this additional information can be captured without
significantly increasing the size of the resulting files.

Another item of information which would be useful in
dealing with cases of plagiarism is the identity of the
original author of the code, as mentioned above. An
alternative might be to save the MAC address of the
computer on which APE is executing at the time of each
save operation. This additional data could prove
extremely useful in situations such as the 'mytutor' case
(Zobel 2004), where an 'external tutor' sold assignment
solutions to a large number of students in the same class
— these submissions could have been flagged for further
attention as they would most likely all have been
prepared on the same non-university machine.

7 Conclusion

APE and Gorilla form a two-stage system for reducing
the incidence of plagiarism in software development
courses, in conjunction with existing anti-plagiarism
strategies. They can be applied to any units where a
stand-alone text editor or development environment is
currently used for creating program files. They are based
on the inclusion of file identification and authentication
data along with the source code when files are saved.
This additional data facilitates the detection of files which
have a common ancestry, regardless of any subsequent
editing of those files, and thereby significantly increases
the amount of effort required for one student to plagiarise
another's code.

An implementation of APE and Gorilla based on the
Eclipse open-source code-base has been completed,
incorporating all of the key features as described in
Section 3. This software will be trialled in the teaching of
the Knowledge-Based Systems unit in the first semester
of 2005.

8 Acknowledgements

The development of APE and Gorilla was funded by a
University of Tasmania Teaching Development Grant,
and carried out by Chris Dalton of ALife Consulting
(www.alife.com.au). We wish to acknowledge the
suggestions made by Chris Dalton and Professor Arthur
Sale.

9 References

Aiken, A. (2004): MOSS: A System for Detecting
Software Plagiarism,
http://www.cs.berkeley.edu/~aiken/moss.html,
Accessed 10th August 2004.

Beasley, J. B. (2004): The Impact of Technology on
Plagiarism Prevention and Detection: Research Process
Automation, A New Approach For Prevention, Proc.
"Plagiarism: Prevention, Practice and Policies 2004":
Joint Information Systems Committee Plagiarism
Advisory Service Conference, June 28-30, Newcastle,
UK.

Braumoeller, B. and Gaines, B. (2001): Actions Do Speak
Louder than Words: Deterring Plagiarism with the Use
of Plagiarism-Detection Software. PS: Political
Science and Politics 34(4):835-839.

Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E.
and Yergeau, F. (eds.) (2004): Extensible Markup
Language (XML) 1.0 (Third Edi t ion) ,
http://www.w3.org/TR/REC-xml/, Accessed February
2004.

Chen, X., Francia, B., Li, M., Mckinnon, B. and Seker, A.
(2004): Shared Information and Program Plagiarism
Detection, IEEE Transactions on Information Theory,
50 (7): 1545 - 1551

Culwin, F., MacLeod, A. and Lancaster, T., (2001):
Source Code Plagiarism in UK HE Schools - Issues,
Attitudes and Tools, Technical Report SBU-CISM-01-
01, South Bank University, 2001.

Eclipse Foundation, http://www.eclipse.org. Accessed 20
August 2004.

Hughes, G., Brown, S., Jakobson, M., Philpot, C.,
Dwight-Moore, P., Jarrett, N., Grainger, T. and Short,
B. (2002): Report on the Viability of CopyCatch
Plagiarism Detection Software, internal report,
University of East London.

Ottenstein, K., (1976): An algorithmic approach to the
detection and prevention of plagiarism, SIGCSE
Bulletin, 8:4: 30-41.

Prechelt, L., Malpohl, G. and Philippsen, M. (2002):
Finding Plagiarisms Amongst a Set of Programs with
JPlag, Journal of Universal Computer Science, 8(11):
1016-1038.

Schleimer, S., Wilkerson, D. and Aiken, A. (2003):
Winnowing: Local Algorithms for Document
Fingerprinting, Proc. SIGMOD 2003, June 9-12 2003,
San Diego.

Sheard, J., Dick, M., Markham, S., Macdonald, I. and
Walsh, M. (2002): Cheating and plagiarism:
perceptions and practices of first year IT students,
Proc. 7th Annual Joint Conference on Innovation and
Technology in Computer Science Education, Aarhus,
Denmark: 183-187.

Sheard, J., Carbone, A. and Dick, M. (2003):
Determination of Factors which Impact on IT Students'
Propensity to Cheat, Proc. Fifth Australasian
Computing Education Conference, Adelaide. Australia
:119-126.

Stokes, F. and Newstead, S. (1995): Undergraduate
cheating: who does what and why? Studies in Higher
Education 20(2):159-172.

Turnitin (2004): http:///www.turnitin.com. Accessed 26
October 2004.

Wagner, N., (2000): Plagiarism by Student Programmers,
http://www.cs.utsa.edu/~wagner/pubs/plagiarism0.html
Accessed 10th August 2004.

Weinstein, J. and Dobkin, C. (2002): Plagiarism in U.S.
Higher Education: Estimating Internet Plagiarism Rates
and Test ing a Means of Deterrence,
http://webdisk.berkeley.edu/~Weinstein/Weinstein-
JobMarketPaper.PDF. Accessed 15 August 2004.

Zobel, J. and Hamilton, M. (2002): Managing Student
Plagiarism in Large Academic Departments, Australian
Universities Review 45(2):119-126.

Zobel, J. (2004): "Uni Cheats Racket": A Case Study in
Plagiarism Investigation, Proc. Sixth Australasian
Computing Education Conference, Dunedin, New
Zealand.

