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Abstract

We examine the theoretical background for the development of numerical methods for solving
some classes of optimal control problems. We give some results devoted to the approximation for
optimal control problems with nonsmooth state constraints and extend the well-posed discrete ap-
proximation approach to the optimization problem with min-max type constraint. Also, we develop
the optimal control theory for the linear dynamics in the presence of intermediate constraints and
so-called linear repetitive processes. The classic approach is based on the separation theorem and
a new, named constructive method is developed. These results are illustrated by solving synthesis
problem for the simple dynamic system. The well-posed discrete approximation is illustrated for

the linear two-dimensional cran manipulator model. The numerical aspects are discussed.
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Preface

This report presents the investigation on the Research work ” Approximations for some classes
of optimal control problems with state constraints and repetitive control systems”. This report
mainly gives the theoretical ba.rt of this research which is based on the numerical methods that
are developed. It is conjectured that the corresponding algorithms will be realized as computer
programs after which they can be used in practical work.

Chapter 1 gives a new theoretical result devoted to the smooth approximation for some of the
nonsmooth optimization problem in general form. A possible discrete approximation scheme is also
discussed.

Chapter 2 extends the well-posed approximation approach to optimization problems with min-
max type constraint as a particular case ol nonsmooth constraints.

In chapter 3, we develop the optimal control theory for the dynamics that are logged by the
presence of intermediate constraints. Such models can be applied to relax the optimization prob-
lems, for example those with phase restriction. These results are applied to solve an illustrative
example.

In chapter 4 the weli-posed discrete approximation is realized for the robot path planning prob-
lem. The numerical aspects are discussed. Two simple test optimization problems are presented.

Chapter 5 develops the optimization theory for so-called repetitive processes. These objects
arise in the modelling of a lot of industrial processes and can be used for planning or learning
procedures. The classic approach based on the separation theorem and a new, named constructive
method are developed. These results are illustrated by solving a synthesis problem for the simple
dynamic system.

In chapter 6 we investigate the links between some classes of linear repetitive processes and
delay systems and apply this to analyze control theory problems arising in controllability and the

optimal control of these repetitive processes.
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Introduction

The past three decades have seen a continually growing interest in so-called nonsmooth theory.
This is clearly related to the wide variety of applications of both practical and theoretical interest.
Many physical processes have a clear nonsmooth structure (see Gilbert [34], Polak [38]). Also, the
nonsmooth approach is frequently used as an analysis tool to solve a wide variety of theoretical
problems (Rockafellar [55], Clarke [8]).

The difficulty with the application of the nonsmooth theory is that it is difficult. Many funda-
mental results of optimal control theory, which are not too difficult to use in the "smooth” case,
become remarkably complex though, even in the simplest ”nonsmooth” cases, and the significant
efforts are required to efliciently apply them to numerical methods.

This research work has been oriented to the development of numerical methods based on this
theory and their application for solving some practical problems.

We consider optimal control problems described by ordinary differential equations in the pres-
ence of trajectory nonsmooth constraints which have often arisen under the mathematical modelling
of real technical processes. The examination of extremal problems with nonsmooth state restric-
tion { max-min constraints are typical of this) have met essential difficulties in both theoretical and
numerical applications (see Arutyunov and Aseev [4], Mordukhovich [45]). As far the theoretical
issues then the main problem is generated by the fact that the state constraints lead to a discon-
tinuity (jump) of the trajectories of the considered dynamical systems. This yields, in part, that
the formulation of the optimality conditions uses heavy mathematical tools such as Borel measures
and constrained variation functions as Lagrange multipliers, etc. In addition, the necessary opti-
mality conditions in this case can be generated for any admissible trajectory. The bibliography
on classic optimization with state constraint can be found, for example, in the survey by Hartl et
al [36). The nonsmooth character of state constraints gives additional difficulties for optimization
of these control models, Naturally, effective numerical methods can not be constructed without
proper theoretical background based on the updated nonsmooth optimization theory (see Clarke
[8], Demyanov and Rubinov [10]). Note that there exists a good theory to construct a discrete
approximation for optimization problems under state constraints (see Teo [64], Mordukhovich [46]
and the bibliography therein). It is well known that the approximation in this case demands
a careful construction of the discrete model to guarantee the needed adequacy of the model (the
counterexample that demonstrates incorrect results of standard discretization can be found in [46]).
The optimization problem with the nonsmooth character of the state constraint is equivalent to a
collection of optimization problems with smooth inequality constraints. This collection can be very

large, and hence their solving by readily available software is exorbitantly expensive. An essential



and key question for both theoretical and numerical aspects of approximations are as follows : can
one approximate, and in which sense, an optimal solution of the original control system by solu-
tions of an approximate model? In order to achieve a well-posed discrete approximation ensuring
the convergence of optimal solutions we need to admit, in general, the state perturbations in the
discrete model. Another way to construct the correct approximation for the optimization problem
under state constraint is to introduce a new (continuous-time) model without any state constraints.
Surely, such simplification demands the proper modification of the model: we make worse (in some
sense) the right- hand side of the control system. Some aspects of this approach for optimization
problems of differential inclusions can be found in the paper by Aseev [5].

Next we consider the optimal control problem described by ordinary differential equations in
presence of the trajectory constraints of the special, min-max, type. This collection can be very
large, and hence solving an optimization problem with max-min constraints by solving each mem-
ber of the collection can be exorbitantly expensive. We present a well-posed discrete approximation
with appropriate converge results. The main complication comes from the nonsmooth phase con-
straints that lead to an increasing number of corresponding discrete finite-dimensional models of
the constrained mathematical programming problem with nonsmooth constraints, which can be
solved by using readily available software. Can one approximate, and in which sense, an optimal
solution of the continuous control system by discrete solutions? In order to achieve a well-posed
approximation ensuring the convergence of optimal solutions we need to admit, in general, the
phase perturbations in the discrete model. It is well known that for the ordinary case of endpoints
constraints the relaxation stability property connected with the so-called ”hidden convexity” of
differential system is necessary and sufficient for the value convergence of discrete approximations
under the appropriate perturbation of endpoints constraints.

Often, the statement of the control and the path planning problem for different mechanisms
may be broken into several stages. Firstly, the key role of such planning methods is to specify a
geometric path in the presence of real physical obstacles. There are a number of research papers
where this task is formulated as a control problem with state space restrictions [34, 38]. The
development of effective numerical methods for their solution is of permanent interest [29, 37, 10].
Here, in particular, we propose to replace the given obstacles by the collection of sets that are
obligatory for the pass-crossing by the considered mechanisms. These sets and their configuration
choice can be pre-assigned by experts or the learning procedure, for example, and they are usually
placed in the "danger” area to avoid possible collisions. The traditional continuity properties
of the considered trajectories hope that the desired behaviour of the model will be satisfactory
in some neighborhood of the given obstacles. The obtained trajectory can be considered then
as a feasible solution to start the various improvement procedures. These procedures can also
be accompanied by the formulation of suitable optimization problems. This part of the report is
arranged as follows. Firstly, we establish the optimality conditions for the robot models described by

linear nonstationary differential equations with nonlinear inputs and equipped by the intermediate



constraints of the general form at pre-assigned moments. The cost functional is given by the convex
function defined on the trajectories of the system at given moments. The next section is devoted to
some applications of the developed results for the robotic motion planning in the two-dimensional
case. Some simple numerical methods are proposed for the particular cases of the considered model.
Finally, the robot dynamics models described by linear stationary differential equations with linear
inputs is chosen to demonstrate and approve the obtained results and discretization schemes. Also
this robot model is used in the course of the report’s chapters to test the obtained results. The choice
of this model is partially explained by the fact that there is some experimental data for it. The
proposed methods can be easy extended to other dynamics which is planned to be realized in the
future. The detail calculation of the nonsmooth functions needed for the computer programming
is given. Also two-dimensional test optimization problems with known exact (theoretical) optimal
solutions are presented.

A multipass process (termed a repetitive process in other literature) is one in which the material
involved is processed by a sequence of passes, termed sweeps, of the processing tool. Such systems
are characterized by two distinctive features, repetitive operation and dependence of the present
pass behaviour on the behaviour of the previous passes. They arise in the modelling of a lot of
industrial processes such as long-wall coal cutting, metal rolling operations and others. Metal
rolling, for example, is an industrial process where deformation of the metal stock takes place
between two rollers with parallel axes revolving in opposite directions through a series of passes for
successive reductions. A repetitive processes of metal rolling modeling in linearized form can be
presented as follows (some details can be found in [56])

% + Ay(t) = )\2% + Ayp—1 (8) + bug(2), t € [0,t%], ke K ={1,..,N},
where y(¢) and yx_1(t) denote the gauge on the current and previous passes through the rollers;
M, Az and b are determined, in fact, by the stiffness of the metal strip and the roller mechanism
properties, u(t) can be interpreted as the applied force to the metal strip by the rollers.

Such dynamic systems also provide an appropriate mathematical tool for modeling chemical
processes. In particular, a model of the rectification process of a many component mixture in a

many-plate column can be represented by a similar model

dxtzt(t) = Vo1 ()ms—1(t) + Va(®)zs(t) — Rs(ws(2}, ys(£)) + e, (£),
dyds—t(t) = Loy1(t)ys+1(t) + Ls(t)ys(2) + Ro(za(t),ys(2)) + uy, (1),

te0,t*], seK={1,.,N}

Here x(s,t), y(s,t) denote the desired material concentration on s-th plate in the gas and liquid
fractions, respectively; L, V and R present the hydrodynamic characteristic of the process under
consideration; u, and wu, are the control material rows; K is a subset of integers. Some details of

the model can be found in [12].



Also problem areas exist where adopting a repetitive process perspective has clear advantages
over the alternatives. The development of a mature systems theory for these processes has been
the subject of considerable research efforts over the past two decades which has resulted in very
significant progress on systems theoretic properties. This work is devoted to the optimization
theory of some classes of these objects.

The first part uses the classic approach to investigate traditional optimal control theory prob-
lems. It is well known that the separation theorem for convex sets is a quite useful approach for
studying a wide class of extremal problems. Here we develop a method to establish optimality con-
ditions in the classic form of maximum principal for multipass nonstationary continuous-discrete
control systems with nonlinear inputs and nonloeal state-phase terminal constraints of the general
form. The obtained results are typical for classic optimal control theory. However, their numerical
realization is not a trivial task. For this reason in the next sections for the stationary case of the
system model and particular case of the constraint and the cost functional we develop new opti-
mality and sub-optimality conditions that are more suitable for the design of numerical methods
and further applications. In contrast to the classic approaches of optimal control theory. In the
second part of the paper we use the idea of the constructive methods reported in [29] and extend
this setting to the continuous-discrete case to produce new results and constructive elements of
optimization theory for the considered repetitive systems and also develop its relevant basic prop-
erties which can be of interest for others purposes. It is shown that the obtained optimality and
c-optimality conditions are closely related to the corresponding classic results of maximum principle
and e- maximum principle. The sensitivity analysis and some differential properties of the optimal
controls under disturbances are discussed and their application to the optimal synthesis problem
is given. It has been conjectured that such a setting could be appropriate for the development of
numerical methods of optimal control problems and related studies, on which very little work has
yet been reported. The obtained results yield a theoretical background for the design problem of
optimal controllers for relevant basic processes.

It is already known that repetitive processes can be represented in various dynamic system
forms, which can, where appropriate, be used to great effect in the control related analysis of these
processes. In the Chapter 6, we investigate further the already known links between some classes
of linear repetitive processes and delay systems, and apply this investigation to analyze control
theory problems arising in the controllability and optimal control of these repetitive processes. In
particular, so-called characteristic mappings introduced in [29] are used to establish controllability
properties criteria. Next, time optimal control problems are considered, where it is well known that
the separation theorem for convex sets is a useful approach for studying a wide class of exiremal

problems. Here we adopt this method to establish optimality conditions in the classic form.

10



Chapter 1

Approximation of the optimal control
problem with the nonsmooth state

constraints

This chapter is concerned with some aspects of approximation for an optimal control problem with
nonsmooth state constraints. We establish some theoretical results devoted to the approximation of
this problem by a sequence of optimization problems without the presence of the state restriction.
Also we exploit the idea of the perturbations of the state constraints for a well-posed discrete
approximation ensuring the convergence of optimal solutions. We then use these results for a
robot model described by linear stationary differential equations with linear inputs to design the
numerical methods. An essential and key question for both theoretical and numerical aspects of
approximations is as follows : can one approximate, and in which sense, an optimal solution of the
original control system by solutions of the approximate model? In order to achieve a well-posed
discrete approximation ensuring the convergence of optimal solutions we need to admit, in general,
the state perturbations in the discrete model. Another way to construct the correct approximation
for the optimization problem under state constraint is to introduce a new (continuous-time) model

without any state constraints.

1.1 Problem statement

In this section we use the idea of the approximation of a continuous-time model for the following

optimal control problem : minimize
max J (u) = p(z(T, v)) (L1)

over absolutely continuous trajectories z : [0,T] — R" for the differential equation

de(t)

2 = flz,u,t), £(0) =x0, u(t) cU. ae tc[0,7] (1.2)

11



subject to the nonsmooth state constraint of the form
z(t) € G, t € [0,T], where G = {z € R": g(z) < 0} (1.3)

where ¢ : R® — R is a continuous function, g : R™ — R is a continuous and directional differentiable
function, xp is the given n— vector. We denote the derivatives of g at a point z in direction ! € R®
by g.(1). Tt is assumed that the function [ — g (I) is continuous as a function of the direction ! for
all z. We suppose that the function f : R® x R” x R — R" satisfles the Caratheodory conditions
(i.e. f is continuous on (z,u) and measurable on ¢) such that the initial Cauchy problem for the

differential equation (1.2) has a unique, absolutely continuous solution.

Definition 1. We say that the function u: T — R" is admissible for (1.2} if it is measurable and
satisfies the constraint u(f) € U almost everywhere t € T, where U is a given compact set from R,
We say that the function = : T — R® is an admissible solution of (1.2) corresponding to the given
admissible control u(t) if it is absolutely continuous with respect to t € T and satisfies (1.2) for

almost all t € T.

Next we suppose that the set of admissible controls U/(-) is nonempty and also assume that the
following condition Aseev [5] is fulfilled:
(A) There exists constants ep > 0, a < 0 such that for all u € U and almost all £ € [0,7] the

following inequality

9,(f(z,u,t)) <@ (1.4)

holds for ¥z : 0 < g{z) < ep.

This condition can be treated as a normality or regularity condition for the optimization problem
with state constraints. In fact, the condition (A} coordinates the dynamic behaviour of the system
(1.2) with the state restriction (1.3) in order to avoid a lengthy presence in the prohibited zone
where the state constraints are disturbed.

We consider this condition in the form ({1.4) since the given number ¢y will be used in the

estimates bellow.

Remark 1. The constraint of the form (1.8) includes a wide class of the state restriction. In

particular, this constraint is often given in the following min form

z(t) € G, t € [0,T], where G ={z e R": g(z) = lgl.i<n wi(z) <0} (1.5)

Usually it is assumed that the functions ¢;(z) are continuously differentiable. It is known that
in this case the function g(z) is continuous, directional differentiable and the derivative along the

direction | € R" is given by the formula

5 = min (252L1), where QUo) = i 5(0) ~ (o)} (16)

12



1.2 Approximation by continuous time optimization problems

In order to construct the correct approximation for the optimization problem with state constraints
we introduce a new mode! without any state constraints. Such simplification demands the corre-
sponding modification of the right-hand side of the control system. This approach for optimization
problems of differential inclusions with smooth state constraints has been proposed by Aseev [5]- In
this section we use his idea for the control systems described by the ordinary differential equations
in the presence of nonsmooth state constraints.

For the optimization problem (1.1) -(1.3) we introduce the following epprozimation: for each

i=1,2,... consider the sequence of the optimal control problems of the form:
maximizeJ(u) = ¢(z(T, u)) (1.7)

over the solutions of the following equations
dr(t)

dt

where h(z) = max{0, g(z)}.

Thus, the original optimization problem (1.1)- (1.3) is approximated by a sequence of continuous

(1 —ih2 (@) fla,u,t), w(t) €U, ae te[0,T], z(0) =z, (1.8)

time optimization problems without state constraints z(¢) € G. This relaxation is compensated by
the modification of the right-hand side of the differential equation. Surely, we are interested in how
the trajectories of the relaxed problem approximate the trajectories of the original system and the

state constraint G ? The following results are true.

Lemma 1. Leti > Elg and the assumption (A) hold. Then each trajectory x(t) of the system (1.8)
0

with the initial condition z(0) =z : g(z1) < 0 and a fized available control function u(t) satisfies

the inequality th®(z(t)) <1 ¥t e[0,T).

Proof. On contrary, let there exist a moment { € [0,T] such that ih2(z(f) > 1. Since ih*(z) is
continuous and iA2(z(0)) = ik%(z1) = 0 then there is a minimal ¢, € (0,7 such that ih?(z(t.)) = 1
and, henee, for any € > 0 there is § > 0 such that 1 — e < ih?(z(t)) <1 Vi€ [t. —4,t,). Since
i > 1/€¢ then 0 < g(z(t)) < eo for V ¢ € [t — 4,%,). Using the properties (see details in the book
by Demyanov and Rubinov [10]) of the function h(x{t)} we can calculate the one-sided derivative

dTh/dt for all ¢ € [tx — &, L)

dr '
&R (0)] = 2ig(2(1))g) ) 5(2) (19)
Estimate using (1.4) we have
9 2o (0] = 2ig(a(E) (1~ (D)0 f(al0), D), 1) < 2igle()ae <O (110)

The cbtained inequality contradicts to the given condition
1 = ih?(x(t,)) = max{ih*(z(t)) : t € [t. — &t} (1.11)

13
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since we have the function ih?(z(t)) that does not increase on the interval [t — &, t.], and, hence,
ih2(x(t) = 1Vt € [t — 6,%,] is false since L. is the minimal time where ih?(z(t.)) = 1. Lemma is

proved. ¢
We can rewrite it in a more general form
dx(t
_ZEE_) = H(z,u,t), u(t) €U, ae te[0,T], z(0) = 2o (1.12)

where the choice of H can be used to improve the required properties of the produced approxi-
mation. In general, we may vary the right-hand side of the differential equation (1.8) in the wide
margins. In particular, the differential equality (1.8) can be replaced by a differential inclusion that
gives the wide margin to use this choice to guarantee the required approximation properties. As
an example, we present the following modification. Assume that there are constants o < 0, eg > 0,

and a continuous function r(z) such that the following inequality
gy(r(@) <a Vz:0=<g(z)<eo (1.13)

holds. Now consider the sequence of the time optimal control problem (1.7)-(1.8) where the differ-
ential equation (1.8) is replaced by the following

dzgt) = (1 —ih* (@) f(z, u. 1) + ih?(z)r(z). (1.14)

For example, the choice of the function r(z) is used to improve the properties of the produced

differential equation. It is shown that the statement of the Lemma 1 is also true in this case. The

corresponding changes of the proof after (1.9)) are given as follows :
+ ’ !
T2 (e(0)] = 2ig(a(t) [gm(t)(f(m(t),U(t),t))(l R () + BR@)ere@)|. (115)

Since the functions f(z,u,t), =(t), g,(1) are continuous then there is a constant M > 0 such that
g;m( flz(t),ul(t),t)) <M vt € [0,T]. Hence, choosing the corresponding € > 0 and 4 > 0, we

have again
dt
E?[hz(o:(t)] = 2ig(z(t))[eM +a(l -] <O tE[t.— kL] (1.16)
And the required statement is obtained.
Theorem 1. Let the given assumptions in Lemma 1 and the following condition
|f(z,u, )| <M YzeR"Wue R",vt € [0, T}

hold with M > 0. Then for any fized control u(t) the trajectory of the system (1.8) with the inilial

condition z(0) = 1 : g{z1) < 0 satisfies the following estimate

M /1
p(z(t),G) < —E-\/; vt e [0,T7. (1.17)
starting from some i > i, where p(z,G) = 11218 iz —yll is the distance between the point T and the
Y

set G,

14
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Proof. It follows from Lemma 1 that for any ¢ € [0,7] the inequality ih?(z(t)) < 1 holds
starting from 7 > Ele;, and, hence, g(z(t)) < \/% In which case for any €., 0 < e < €g the inequality
0

glz(t) < \/% < ¢, holds for all ¢ € [0,7), starting from some & > io. If glz(t)) <0 Vit e[0,T]
then p(z,G) = Osince z{t) EG Vi € [0,7]. Let it be that the inequality g(z()} < 0is not fulfilled
on the interval [0, 7). Pick an arbitrary 7 € [0, T] where g(z(7)) > 0. Consider now the following
Cauchy problem

Y= f(ysu(t)ut): y(O) = .’.E(T), t=>0 (1'18)

where u(f) is the control function corresponding to the given trajectory z(t). This problem has a
unigue solution defined on the interval [0, 7). Since g(y(0)) = g(z(r)) >0 and the function g(y) is
continuous then there is a small € > 0 such that g(y(£)) = 0 for almost all t € [0, €}, and, due to the

assumption (A)

NG CTORTORNEEI (1.19)

for all t € [0, €]. Then calculating the directional derivative of the function g(y(t)) yields:

+ I !}
%;[g(y(t)l = gy W) = gy (F(t),u(t), 1)) <@ <0, t€ [0, €] (1.20)

Since ‘fT:[g(y(t)] < o for all t € [0,€] with o < 0 then integrating the last differential inequality

along some direction yields the following estimate

g(yle)) < glz(r)) e e (1.21)
for the function g(y(t)). This yields that 37, 0 <7 < —Lg(z(r)) such that g(y(#)) = 0. The last
says that y(#)} € G. Hence, integrating the system (1.18) leads to the following estimate

pla(), &) = min lz(r) =yl < l=(r) =y <

<o) o)~ [ Fu el < M7 < alal) < L3 (122
0

for all t € [0,77] and i > ip for some integer ig. The proof is completed. #

1.3 Discrete approximation

In this section we present a short description of a possible discretization scheme for the considered
nonsmooth optimization problem. In the Introduction it is noted that a well-posed discrete approx-
imation based on finite differences can be achieved if some perturbations of the state constraints
are admitted in the produced discrete models. In this section, base on the the approach proposed
by Mordukhovich [46] we construct a well-posed discrete model for the control model (1.1)-(1.2)

with nonsmooth state constraints {1.3).
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Replace the derivatives in (1.2) by the Euler finite difference
. 1
£(L) = E[m(t +h)—=z(t)] ash—0 (1.23)

Given N =1,2,3,..., let Ty = {0, hn, 2hn, ..., T — hx} be a uniform grid on [0, 7] with the step

size hy = 1%: and let
zn(t+hy) = zn(t) + hnflzn(t), un(t),t) fort € Ty, N =1,2, .. (1.24)

be an associated sequence of discrete equations. The state constraints (1.3) are replaced by the

following disturbed discrete analogous ones
9(z(t)) < en- (1.25)

We say that the sequence of the problems of (1.1}, (1.24), (1.25) is a discrete approximation of the
problems (1.1), {(1.2), (1.3)if Ay = 0 and ey — 0as N — oo.

Our purpose is to state the condition that guarantees the convergence of the optimal trajectories
and the optimal criteria values for the given discrete approximation at N — co.

First, we establish that any admissible trajectory of (1.2} can be uniformly approximated by a
sequence of the discrete trajectories of (1.24). This can be done on the basis of the known results of
optimal control theory. Next, using the results obtained by Mordukhovich [46] we show that the so-
called relaxation stability property is sufficient for the value convergence of discrete approximation
under the perturbation of the state constraints. It should be noted that the requirements of the
state constraints perturbation in the discrete scheme is essential for the value convergence (some
details and corresponding counterexamples can be found in the book by Mordukhovich {46]).

Let z(2), t € T be a trajectory of the discrete equation (1.24), and for any ¢ € [0, 7] denote
by tV and ty the points of the grid T nearest to ¢ from left and right, respectively. Consider the

following piecewise-linear extension of the discrete trajectories (the so-called Euler’s broken line)
1
zn(f) = en (™) + ﬁ[xN(tN) — zn ())& — V) for t € [0, T (1.26)
The following result for the pointwise convergence of the extended trajectories is true.

Lemma 2. Let z(t), t € [0,T] be an admissible absolutely continuous trajectory of (1.2). Then
for any partition Tx of the interval [0,T] with hy — 0 as N — oo there exists a subsequence
{zxn(t)}, t € Ty, of the admissible solutions of the discrete equation (1.24), the piecewise-linear
extensions (1.26) of which converge uniformly to x(t) on the interval [0,T].

The proof of this and next Lemmas are based on the results of [46]. Some analogies of them
are given in the next Chapter for the min-max constraints.

A well-posed approximation ensuring a correct convergence of the optimal discrete trajectories
of (1.1), (1.24)- (1.25) to the optimal solution of the original problem (1.1)-(1.3) exploits the fol-

lowing relazation stebility property. Along with the optimization problem (1.1)-(1.3) we consider
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the following relaxation {in the Gamkrelidze form): minimize the cost functional (1.1) over the set
of couples of measurable functions {oi(t),wi(t), i=1,2,...,n+ 1} and the set of absolutely con-
tinuous trajectories z(t), ¢ € [0, T} which satisfy the constraints (1.3) and the following convexified

differential equations

d:!,‘(t) n+1
= ;ai(t)f(m,ui,t), ae. te[0,T], z(0) = o,
n+1
a®) =0, Y ailt) =1, wt) eV, i=12 .. ,n+ 1 (1.27)

i=1

7. J%, JR,, N =1,2,... denote the minimal values of the cost functional {1.1) in the problems
(1.2)-(1.3), (1.27) and (1.24)-(1.25), respectively.

Tt is said that the original optimization problem (1.1)-(1.3) is stable with respect to relazation
if J& = J-

This property is connected with the so-called hidden convexity of the nonconvex differential
systems and it holds for the wide class of control systems such as linear systems, nonlinear systems
in the absence of the state constraints and some others. Thus, the required value convergence is

given by the following

Lemma 3. Assume the problem (1.1)- (1.8) is stable with respect to relazation. Then there is
a sequence of perturbations ey — 0 0s N — oo in (1.24), (1.25) such that one has the value

convergence lim D= J8.
N—oo

The proof can be obtained similarly to that given in the next Section.

1.4 Distance function in a robot path planning motion

In this section we show how the nonsmooth optimization problem of the form (1.1)-(1.3) arises in the
planning motion of a two dimensional Tobot mechanism. We formulate the path -trek problem for
the mechanism that could cross the given domain with a safety clearance along the given obstacles.

The figure bellow shows a crane manipulator K

The task is to remove the payload from the initial position A to the final position B, avoiding the
given obstacles Kz, ..., K7 Some aspects of the problem statement for this problem were discussed
by Gilbert and Jonson {34], Polak and C. Neto [38] {other details of this model will also be given in
Section 5). In the considered case the first stage of the path planning is to test some variants of the
track by putting the sets M, i=1,..,min eritical places to guarantee a safe distance, and that
are on the obligatory track for the path used by the crane {these sets are marked on the figure by
the circles ). Thus, the solution of the original path planning problem in the presence of the given

obstacles is replaced by a relaxed problem with intermediate constraints. Such problem statements
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can be attractive in the initial stage of the principal planning. It is conjectured that the relaxed
problem admits the effective numerical solution for multiple repetition with different variants of
intermediate constraints. The obtained trajectory can be used then as a starting position for the
various improving procedures. These procedures can be accompanied by the formulation of suitable
optimization problems.

The robot model under consideration is described as follows

migi(t) + Fgi(t) = hiui(t), i=1,2 (1.28)

where mi are the inertias of the uncoupled axes, ¢, k' are the parameters of the dc motor drives,
and u' are the bounded motor control voltages {ul(t)| < e, |u®(t)| < . The beginning and ending
points A, B give q(0) = ga, ¢(T) = gz and ¢(0) = ¢(T') = 0. The energy required to transfer the
payload in a fixed time T is

T2
I = [ Sl -1 OF Ol (1.29)
i=1

where 4* > 0 are motor parameters. To the optimal control problem (1.28)-(1.29) we add special
geometric constraints corresponding to the avoidance of the obstacle K;,¢i = 1,...,m, where K;
are some closed convex sets. These state constraints follow from the obvious requirement that the
robot does not crash (that means to not touch any part of obstacles while "travelling” between
them). This requirement can be presented in general form:

e, [max {d; — di(z(t))} <0 (1.30)

where d;(z(t)) denotes the distance between robot and ¢ — th obstacle at the moment ¢, and df

denotes the safety distance between mechanism and ¢ — th obstacle. The model above we present
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in standard form

il = %3, (17'2 = —ag3 + b2u17 (1 31)

Ty = T4, Ta = —aaTq + baug, t< [0,T]

. . 1
where g1 (£) = z1(£), d1(t) = ©2(t), ga(t) = z3(t), da(t) = za(t) and az = 2, as = 2, by = 21, bs =
%. The geometric constraints connected with the obstacle Kj,i = 1,...,m can be represented
by the corresponding closed and convex sets §); C R4, i =1,...,m the interiors of which can be

empty, in general. It is known that for each i = 1,...,m the distance function

Vi —yilz),z —yilz), Hzg
ifzxe

di($)=;gg:||$ il = llz — wilz)ll = (1.32)

1
is a convex and directional differentiable function. (Here (-,-) means an inner product in B? and
y;(z) denotes the element y € € where the maximum in (1.32) is achieved). In addition, their
directional derivative at the point z = xg is given as

(di)o(zo) = ﬂegb?(ﬁo)(v, 1) (1.33)

where the subdifferential dd;(xo) is given by

i(xn) — d;l xg), if xg &Y

O (zn) = (wi(xo) — za)d; " (z0) 0 ¢ (134)
(—F:_(ﬂro) Mn B]_), if &g € &

and T} (zg) = {z € R* : (z — mp,2) 0, Vz € U}, B1 = {z € RY : ||z|| < 1} (details see V

Demyanov and L. Vasiljev [11] ).

Introduce the function

glw) = max {d; di(z)} (1.35)
Since the functions di(z), i = 1,...,m are directionally differentiable then the function g{z) is also

directionally differentiable and their derivative along the direction [ € R” is given by the formula
g:(1) = _lé%aé){“(di);;(l)}; where Q(z) = {i: 1<i<m, g(z) =dj — di(2)} (1.36)
®
Hence, the robot motion optimization problem can be rewritten in the required form of (2.2), (2.3):
T 2 . . - .
minimizeJ () = f S — (e, (1.37)
0 =1
over the solution of the differential equations (1.31) subject to the nonsmooth state constraint

z(t) € G, t € [0,T], where G = {z e R*: g(z) < 0} (1.38)
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where the function g(z) is given by the formula (1.35). In accordance with the proposed approach
for the formulated problem we consider the following sequence of the approximating optimal control
problems : for each i = 1,2, ... minimize the cost functional (1.37) over the solution of the following

differential equations
= (1—ik2 @) f(z,ut), z€RY  £c[0,7] (1.39)

where h($) = max{O,g(:c)}, f = (fls"'afél) with fl = X2, f2 = —aar3 + b2u11 .f3 = T4, f4 =
—a4T4 + baua. In this case the required regularity conditions of (1.4) are

iggg){—(di)m(f(w,u, )} <a<0 (1.40)

and they indicate on the request to avoid a lengthy presence in the prohibited zone 0 < g{z) < €o.
This condition depends on the form of the set ;. Hence, in order to guarantee the needed property
it is sufficient to make a slight variation to these sets.

Thus the primary goal to leave out the state constraint in the considered robot motion model is
achieved. Now the modified optimization problem can be solved by using the corresponding optimal

control "nonsmooth” software.

1.5 Conclusions

This Chapter has used a continuous time approximation to develop a method to solve optimization
problems with nonsmooth state constraints of a general form. The major advantage of using the
proposed approximation is that it eliminates the need for solving a potentially very large collection of
the constrained nonlinear programming problems which usually arise under standard approximation
schemes. We present the theoretical background to construct a scheme with trajectory convergence.
The modified optimization problem can be solved by using the corresponding optimal control
"nonsmooth” software. It is conjectured that our approach accompanied by modern methods of
nonsmooth optimization (Clarke [8], Demyanov and Rubinov [10, 61]), computational theory for
optimal control ( Teo [64]) and some results for optimization of special repetitive processes (see
Dymkou et al) will be effective for the considered optimal control problems with state constraints.

In the next Chapter we consider a special case of nonsmooth constraints represented by min-max

type functions for which the so-called well-posed discrete approximation is given.
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Chapter 2

Discrete approximations for the
optimal control problem with

max-min constraints

This chapter is concerned with some aspects of approximation for a nonsmooth optimal control
problem with state constraints of a special min-max kind. We discuss the idea of the perturbations
of the state constraints for a well-posed discrete approximation ensuring the convergence of optimal
solutions. We use these results for robot models described by linear stationary differential equations
with linear inputs. A numerical method based on the discrete gradient method is proposed for the

particular case of the considered model.

2.1 Preliminary notations and definitions

We consider the following optimal control problem : minimize

J(w) = pol@(0), 2(T)) — max 1)
over the absolutely continuous trajectories z : [0, 7] — R™ of the differential equation
dx(t
% = flz,u,t), z(0) =0, u(t) €U, ae tel0,T] (2.2)

under state constraints of the form

ok min wilz(t), 1) <0 (2.3)

where @y : R? x R* — R and ¢; : R* x R — R are given continuous functions, g is the given n—
vector. We suppose that

i) the function f : R* x R" xIR — R" satisfies to the Caratheodory conditions (i.e. f is continuous
on (z,u) and measurable on ¢) such that the initial Cauchy problem for the differential equation

(2.2) has an unigue absolutely continuous solution.
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Definition 2. We say that the function v : T — R" is admissible for (2.2) if it is measurable and
satisfies the constraint ut) € U almost everywhere t € T, where U is a given compact set from R".
We say that the function  : T — R" is an admissible solution of (2.2) corresponding to the given
admissible control u(t) if it is absolutely continuous with respect to t € T and satisfies (2.2) for

almost allt € T.

Next we suppose that the set of admissible ¢ontrols U(-) is nonempty. In addition, we also
suppose that

i) the sets of admissible trajectories of (2.2) is bounded, i.e. these trajectories belong to a ball
By={zeR":|z|| <r}, 0<r<oco. In order to guarantee the last requirement we assume that
the condition |f(z,u,t)| < u(t)g(]z|) holds, where p(#) is summable and g(|z|) = O(lz]) at |z| — oc
(60].

The state constraints (2.3) demand the constructing of a correct discrete approximation that
ensures converge results for optimal solutions.

To emphasize this we demonstrate the following counterexample.

2.1.1 Counterexample

In general, the discrete approximation schemes that are usually used to develop numerical methods,
for optimization in the presence of state constraints demand careful consideration to ensure, at least,
the convergence of discrete trajectories and cost values to the desired optimal values. To emphasize
this point we demonstrate the following counterexample, where the typical discretization leads to
incorrect results. Namely, this example shows that the cost value convergence is absent.

Consider the problem [46]

J(u) = —z(1) — m&n (2.4)
d“:iit) —u, z(0)=0cR
w(t) e U ={0,v2}, te01]
(2.5)
under the state constraint
z(1) e @ = {0,1} (2.6)

Optimal control is

V2 for t € Ty C [0,1], mes Tp = 1/v/2,
0, for t € [0,1]\ T

uwl(t) =
and
JOwPy =1
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Consider a uniform grid on [0, 1] with step size by =1 /N and the corresponding discrete approxi-

mation
an(t + hy) = zn(t) + hyvun(t), zn(0) =0
un(2) € {0,v3}, te{o,%,...,l_%}
and
In(u) = —zn(1) — min
under the same state constraint
zn(1) € Q= {0,1} (2.7)

1t is easy to verify that for any
k
un(t) € {0,v2} — an(l) = ﬁ\/é-

where k is some integer £ < N. Thus zn(t) # 1 for all ux (t) and, hence, an unique admissible

control Function for the discrete problem (2.7) is un () =0. Therefore,
JG=0#-1=J°

This means that discrete approximation (2.7} is not a value convergence for the original problem
(2.4)-(2.6).

Thus, the key point for the value non-convergence ig an incorrect approximation of the state
constraint that gives motivation to investigate the well-posed discrete approximation for the opti-

mization problem with nonsmooth state constraints

2.2 Discrete approximation

In this section, based on the approach proposed in [46], we construct a well-posed discrete model for
the original problem (2.1}-(2.3), where the unique peculiarity is generated by the state constraints
of (2.3). An essential and crucial question for both theoretical and numerical aspects of discrete
approximations is as follows : can one approximate, and in which sense, an optimal solution of the
continuous control system by discrete solutions? In order to achieve a well-posed approximation
ensuring the convergence of optimal solutions we need to admit, in general, the state constraints
perturbations in the discrete model.
Replace the derivatives in (2.2) by the Fuler finite difference

() ~ %[m(t FR) —z()] ash -0 (2.8)
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Given N =1,2,3,..., let Ty = {0, hn, 2hp, ..., T — hx} be a uniform grid on [0, T with the step

size hy = %—, and let
zn(t+hy) =on(t) + hnflzy (@), un(®),t) fort € Ty, N =1,2,... (2.9)

be an associated sequence of discrete equations. The state constraints (2.3) are replaced by the
following disturbed discrete analogous ones

in o (z(t),1) < en. 2.10
%%12%%%(“'”( ),t) <en (2.10)

Definition 3. We say that the sequence of the problems of (2.1), (2.9), (2.10) is a discrete ap-
prozimation of the problem (2.1), (2.2), (2.3) ifhy — 0 andey — 0 as N — o0

We suppose also that the condition ii) also holds for the discrete trajectories of (2.9) if N > Ny
is big enough.

The aim of this paper is to find the condition that guarantees the convergence of the optimal
trajectories and optimal criteria values for the given discrete approximation at N -- oco.

- Firstly, we establish that any admissible trajectory of (2.2) can be uniformly approximated by a
sequence of the discrete trajectories of (2.9). Next using the results [46] we show that the so-called
relaxation stability property is sufficient for the value convergence of the discrete approximation
under the correct perturbation of the state constraints. It should be noted that the requirements
of the state constraints perturbation in the discrete scheme is essential for the value convergence
(some details and corresponding counterexamples can be found in [46]).

Let z(t), t € T be a trajectory of the discrete equation (2.9), and for any ¢ € [0,T7} denote by
t and tx be the points of the grid Ty nearest to ¢ {from left and right, respectively. Consider the

following piecewise-linear extension of the discrete trajectories ( the so-called Euler’s broken line)
1
2y (t) = za(t) + -ﬁ;[:cN(tN) en(t™)(t — V) for t € [0,T] (2.11)
The following result for the pointwise convergence of the extended trajectories is true.

Lemma 4. Let the given assumptions i)-ii) hold and z(t), t € [0,T] be an admissible absolutely
continuous trajectory of (2.2). Then for any partition Ty of the interval [0,T] with hy — 0 as
N — oo there exists a subsequence {zn(t)}, t € Tn, of the admissible solutions of the discrete
equation (2.9), the piecewise-linear extensions (2.11) of which converge uniformly to x(t) on the

interval [0,7).

Proof. The sketch of the proof below follows, in the main [45]. Firstly, we consider the case
where the control function u(t),t € [0,7T) corresponding the given trajectory z(t),t € [0,T] is
continuous almost everywhere on the interval [0, 7}. For the given control function u(t), t ¢ (0,1

constructs the following discrete control function un(t) = u(t), t € Ty, N = 1,2,.. , and prove
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that the corresponding discrete solutions zx(t) of the discrete equation (2.9) converges uniformly
to z(t) on the interval [0,T]. From (2.9) and (2.11) it follows that

d:L‘N(t)

ek Flan(EV), un@V), ), t< [0, T\ Tn (2.12)

Under the given assumption, the sequence {zx(t), t € [0,T], N =1,2,...} is a uniformly bounded
and equicontinuous set of functions. In accordance with the Arzela theorem, this set is precompact,
and hence in this set there exists a uniformly convergent subsequence that without loss of generality
is rewritten by the same letter. z*(t) denotes their limiting elements in the space C[0,T] of all
continuous functions on [0, 7] and show that z*(t) = ().

Consider the functions of the form ny(f) = f(zn(Y),un(tY),t¥} for all t < [0,T]. Since
the function w(t) is continuous almost everywhere on [0,T] then in accordance with the given
discretization method for uy(t) we show that the sequence {nn(t)} converges almost everywhere
to the function f(z*(t),u(t),t). Hence, taking into account condition ii), we can apply the Liebeg

theorem about the limit passage under the integral sign in the following equality
i
2 (t) = 20 + / nn(s)ds), te 0T} (2.13)
0

This yields that the function z*(£) is the solution of the equation (2.9) corresponding to the given
control function u = u(£). The required equality =*(t) = z(t) follows immediately from the unique-
ness assumption i) that proves the theorem for the case when the control function u(t),t € (0,7 is
continuous almost everywhere on the interval [0, 7.

The general case of the measurable control function is reduced to the considered case on the
basis of the following proposition.

For any control function u(t) satisfying to the constraint u(t) € U a.e. £ € [0, T] there exists a
sequence of the functions {un(t)}, un(t) € U a.e. t € [0, T] which are continuous almost everywhere
on [0,7] such that u,(t) — u(t) converges in some measure y, Le. V¢ >0 nh_}rr&o p{t : ||u(t) —
un(t)]| > €} = 0. Moreover, the corresponding trajectories Tn (t) converge uniformly to the function
z(t).

To prove this proposition we use the C'— property of the measurable function stated by the
Luzin theorem. According to this property there exists a sequence of the positive numbers € —
0, k=1,2,... and the corresponding closed sets T, such that mes(T\T,) < e and the restriction
of the given function u(t) on each T, is continuous.

The sets T\T, can be represented by a denumerable number of the disjoint intervals (oju, Bk}, § =
1,2,.... Consider now the functions

ult), teTe,, k=12, ..

up(t) = (2.14)
w(oge), € (e, Bixh, 5= 1,2,
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From (2.14) it follows that the functions ux(t) can be only discontinued at the moments t = G5, 7 =
1,2,.... Moreover, the following inequality mes{t : u(t) # up(t)} < € 18 fulfilled which gives the
uniform convergence of ug(t) — u(t) in the measure.

Thus, the desired sequence of {up()}, k=1,2,... is stated. The required uniform convergence
of the corresponding trajectories follows again from the Liebig theorem [7D-
The lemma is proved. 4

A well-posed approximation ensuring a convergence of the optimal discrete trajectories of (2.1),
(2.9)- (2.10) to the optimal solution of the original problem (2.1)-(2.3) exploits the following relaz-
ation stability property [33, 46).

Along with the optimization problem (2.1)-(2.3) we consider the following relaxation (in the
Garnkrelidze form): minimize the cost functional {2.1) over the set of couples of measurable func-
tions {ay(t), ws(t), i =1, 2,...,n+1} and the set of absolutely continuous trajectories z(t), t € [0,T]

which satisfies the constraints (2.3) and the following convexified differential equations

9l _ N o,0)f (o050, 2(0) =
dt - g .3 mau’h ) T _3:0:
n+1
a(t) 20, Y ai(t) =1, wt) € U, ae tel0,T],i=12...,ntl (2.15)
i=1

J2, %, Jo. N =1,2,... denote the minimal values of the cost functional (2.1) in the problems
(2.2)-(2.3), (2.15) and (2.9)-(2.10), respectively.

It is said that the original optimization problem (2.1)-(2.3) is stable with respect to relazation
if JO = Jg.

This property is connected with the so-called hidden converity of nonconvex differential systems
and it holds for the wider class of control systems such as linear systems, nonlinear systems in

absence of state constraints, etc.

Lemma 5. Assume in addition to i)-ii) that the function @;, 4 = 0,1,...,m are continuous and the
problem (2.1)- (2.8)is stable with respect to relazation. Then there is a sequence of perturbations

ey — 0 as N —ooin (2.9), (2.10) such that one has o value convergence A]rlim %= JS.
— o0

Proof. To prove Lemma 5 it is enough to show that under the given assumption the following
inequality

JY < lim infJR < Jim_sup I < I8 {2.16)
—00

N—co

holds. Then the relaxation stability property leads immediately to desired equality A}im S = Ja.
—00
Hence, we need to state the inequality (2.16).
Let {zk(t)}, T € [0,7], K =12,-.. be the minimizing sequence of admissible trajectories in

(2.1). Under the given assumption this set is precompact in the space C[0,T]. Hence, there is
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a subsequence from {zx(t)} that converges uniformly to the absolutely continuous function z0(t)
that realizes the infimum for the cost functional (2.1) in (2.2)-(2.3}.

Let {Tn}, N =1,2,... bean arbitrary sequence of the grids on the interval [0,T] with the
step size hy — 0 at N — 00 Then from Lemma 4 it foliows that there is a sequence of admissible
discrete trajectories zn(t), N — oo of (2.8)-(2.9), the piecewise-linear extensions (2.11) of which
converge uniformly to the given limit function z0(t) on the interval [0, T).

Consider now a sequence of discrete problems (2.1), (2.9)-(2.10}, where the sequence {ex} is

defined as follows
— ; (0 i )
ey = max{max e wi(x (t)at),rnteaiz(1 min wilzn(t), 1)} (2.17)

Since the functions ¢; are continuous and zn(t) — zV(t) converges uniformly then ey -+ 0 at
N —» 0o. Next we prove the validity of the right hand side of inequality (2.16).
Suppose now that there exists a subsequence {N1}, N1 — o0 such that the following inequality
Jim I, > I8 = po(a(0),2°(T) (218)
1—00

holds. Since the function ¢ is continuous and T, (t) — z0(t) converges uniformly then
J3 > po(@n(0), %(T)) (2.19)

for some large numbers n from {Ni}. From (2.3) and (2.17) follows that the trajectories Tn(t)
are admissible for the discrete problem (2.1), (2.9)-(2.10). Due to this, the condition (2.19) is
impossible which proves the validity of the right hand side of inequality (2.16).

In order to prove the left hand side of (2.16) it is enough to show that the uniform limit
z(t), t € [0,T] of the admissible discrete trajectories zn(t), t € [0,T] of (2.1), (2.9)-(2.10) is
an admissible trajectory for the relaxed optimization problem (2.15). Since ey — 0 N —-
and the functions ; are continuous then the inequality (2.10) yields that the limit function x{t)
that satisfies the state constraints (2.3). Next we prove that the limit trajectory z(t) satisfies the
following inclusion

dz(t)

dt
where f(z,U,t) = {y € R" "y = f(z,u,t), we U} and convV denotes the convex hull of the set
V. Then using the Filipov theorem [46] on measurable selectors to (2.20) yields that there exists a
measurable couple {o; (1), ui(t), 1 =1,2,...,n+ 1} that produces the limit trajectory z(t) in the

€ convf(z(t),U,1) (2.20)

relaxed differential equation (2.15).
Now we need to prove (2.20). For any € >0 the following inclusion
dn 1)
dt
is fulfilled for some N > Np and almost everywhere t € [0,7], and where V]e = {z € R" :
leel{.l/ ||z - z|| < e. Further, to state the density of the set of admissible trajectories of the differential

= flan (™), un(t),tV) € [f@(8), Ui bliq (2.21)
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inclusion (2.20) we use the classical Mazur theorem [7]. According to this theorem the convex
combination of the derivatives & n(t) converges weakly to &(t) in the space L0, T],p = 1. Due to

this, we have
(—i%itl € conv(f(z(t), U, t)e (2.22)

for all € > 0. In other words the following inclusion

dz(t)
dt

e () conv[f(z(®), Us e (2.23)

x>0
.5 valid. To finish the proof of (2.20) it is sufficient to establish the following equality

conv f(z(£), U, 1) ﬂ conv(f(z(t), U, )l (2.24)

e>0
It is obvious that conv f(z(t), U,t) c N conv[f(z(t),U, t)e.
>0
Now we prove the reverse inclusion

ﬂ conv(f (z(t), U, 1)l C conv f(z(t), U, t).

>0

Let v € [ conv[f (a(t), U, 1)]e. Then for any sequence € — 0, k= 1,2,... there exists the sequence
>0
aku i=1,2,. n+1;k=1,2,...suchtha,t

n+1 n+l
v = Za e [fz), U, t)ens @ k>0, af = 1. (2.25}
i=1
Let uf be the elements from the set U that satisfies the following inequality
Wf(z, ul 1) _of| <e, i=1,2,..n L E=1,2, .. (2.26)

n+l
Since the sets U, f(z,U,t), P = {o; : af >0, S of = 1} are compact gets then there is such a
i=1

subsequence integers {k}, k — 00 that
uf —u; €U, {az}—>{a°}eP of o, i=12, .n+l (2.27)

It follows from (2.25)-(2.26) that

n-t-1
R = flzudt), =12 ntl v= Za?f(;c,u;?,t) (2.28)

=1
This completes the proof of (2.24), (2.20) and the validity of the left hand side of (2.16), respectively.

The lemma is proved. &

28




- -l

2.3 Conclusions

In this Chapter, we constructed a well -posed discrete model for the original problem (2.1)-(2.3),
where the unique peculiarity is generated by the state constraints of (2.3). In order to achieve a
well-posed approximation ensuring the correct convergence of optimal solutions we need to admit,
in general, the state constraints perturbations in the discrete model. In Chapter 5, we use these
results for robot models described by linear differential equations with constant coeflicients and
linear inputs where a numerical method based on the well-posed discretization is proposed for the
particular case of the considered model.

In the next Chapter another approach for the solving optimization problems with state con-
straint is developed. It is proposed to relax the state restriction by putting a collection of pre-

assigned state constraints at the fixed moments in time.
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Chapter 3

Optimization problems in the

presence of intermediate constraints

An approach to the the planning of the paths of robot mechanisms in the presence of obstacles
is proposed. This problem is formulated as an optimization problem with the preassigned in-
termediate constraints characterizing the desired path of the robot. A simple case of the robot
mechanism is considered and the numerical aspects are also discussed. The chapter is arranged
as follows. Firstly, we establish the optimality conditions for the control models described by lin-
ear nonstationary differential equations with nonlinear inputs and equipped with the intermediate
constraints of the general form at the pre-assigned moments. The cost functional is given by the
convex function defined on the trajectories of the system at given moments. The next section is
devoted to an application of the developed results for the planning of the robotic motion in the
two-dimensional case. A simple numerical method is proposed for the particular cases of the model

under consideration.

3.1 Problem formulation

We consider the dynamics where the relationship between the control variables u(f) € R” and the
object state variables z(t) € R™ is described by the following system of linear differential equations

with nonstationary coeflicients

2l _ A +b(e0,9, 1T =04 (3.1)
with the initial conditions of the form

z{0) = zo (3.2)

Definition 4. We say that the function u : T — R" is available for (3.1} if it is measurable and

satisfies the constraint u(t) € U almost everywhere t € T, where U is a given compact set from R’
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And, we say that the function z : T — R™ is a solution of (3.1 ) corresponding to the given available

control u(t) if it is absolutely continuous and satisfies (3.1) for almost alll € T.

Next we denote the set, of available controls by U(). Let My, M; CR", 1=1,2,.. k be given

compacl convex sets.

Definition 5. The available control u(t) is said to be admissible if the corresponding solution

2(t) = (t, zo,u) of (3.1) with the initial condition ( 3.2) satisfies the conditions
E(T,;) S M@, 1=1,2,..., k (33)
where 0 < 71 < Ty < ... < T =t} are given moments in T.

Next we assume that the set of admissible controls is nonempty (it can be also guaranteed by
the relevant controllability assumptions). The optimal control problem is to find the admissible
control u(-) € U(:) that minimizes the cost functional of the form

J(w) = plx(r), z(12), ... 2(Tk)) urenl,ifl(l-) (3.4)

Remark 2. The cost functional (3.4) for the planning of the robot path are often chosen in the

form of the weighting distance function

k
J(u) = @(m(Tl)am(T2)a e B(TE)) = Zaip($(7'i:x0,u),Mi) — Iél&r(l) (3.5)
i=1 uebt

where p(z (T, zo, w), M;) denotes the distance from the trajectory point x(Ti, To, u) to the set M; and

the positive numbers c;; means the penalty coefficients for the failure requirements of (8.8).

Another effective approach for the study of robot dynamics is to use "minmax” type functions
for the description of state constraint.

I} = @), (), s () = muax pla(rs, 7o, u), My) = min, (36)

In the both cases the zero cost functional value means that the corresponding trajectory passes
through the given sets M;.

In the problem above we assume that the moments 73, ¢ = 1,..., k are fixed. An interesting
optimization problem can be formulated in the case when this does not hold. Let T be the set of all
collections 7 = {7, ..., 7} satisfying the inequalities 0 <73 <72 <... <7 = t} and II denotes the
set of all permutations m = {i1,42,.. ., i} of the indexes 1,2,..., k. For the given control function
u(-) € U(-) we define the cost functional as

k

J(r,mu) =171 = %i}flgleiﬁlZ(Tz'H —Ti)

=1
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The optimization problem is now: to find the admissible control w®(-} € U(-), the order 7t =
{9,49,...,1%} of path-tracing for the pre-assigned sets M;, ¢ = 1,...,k starting at the initial
moment £ = 0 from the point z(0) = Zo, and the collection 70 = {7, ..., 70} of the corresponding
moments such that they satisfy the following condition

k

J(7°, 7© «?) = minmin .4 - T;) -— min 3.7
( . ) -rGEl’I' 11'6111 izl(TH_l 1) uel () ( )

3.2 Optimality conditions

In this section we consider the optimization problem with the cost functional of (5.4), where the
function ¢ : k™ — R is convex.

Next we assume that the (n x n)- matrix function A(t) is measurable and integrable on T', the
funetion b : U x T — R™ is continuous with respect to (u,t) € U x T. It is easy to see that these
conditions guarantee the existence and uniqueness of an absolutely continuous solution of equation
(3.1) satisfying conditions (3.2) for any available control u(t).

The representation of the solution of (3.1) uses the (n x n)-matrix function ®(7,t) defined by
the following equation

do(1.t) _ g(n)a(r,1), Bt t) = E. (3.8)

dr

As is well known, the entries of the matrix ®(r,t) are absolutely continuous functions defined on
the set T x T. Then the solution of (3.1)-(3.2) at the moment ¢ = 7; corresponding to a given

available control « € U(+) can be written in the form

7
(1) = ®(75,0)z0 + f@('rj,t)b(u(t),t)dt, i=1,2,..k, (3.9)
0
Let ¢ = (€1,C5 -1 Ck) € R7* where
Cj = @(Tj,(})mg (3.10)

and introduce the mapping §: U(-) — R™ as Su = (S1u, Sot, ..., Sku) where
7j
Sju= / o(r;, Ob(u(e), D), §= 1,2, . (3.11)
0
Tntroduce now the following Augiliary problem (A): find the necessary and sufficient conditions

for the relation
z=c+ Su (3.12)
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to be valid under the constraint
zeM, p(z) <46, z€ R e U(), (3.13)

where M = My x My x ... Xx M C R™ and § is a fixed number from R.
Tet

R={zcR™, z=c+Su, ucUQ)} KO = (z e R™, z€ M, ¢(z) <6} (3.14)

It is easy to see that the geometric criteria for the solvability of Problem (A)isRNK (&) # 0.
Now we establish an analytical form for this geometric criteria. To prove this we use the separation
theorem for convex sets. To this end, we study the necessary properties of the sets R and K(9).
The main difficulties in this analysis are related to the set R, since under the given assumptions

we can easily see that K(4) is a convex closed set.
Lemma 6. The set R given by (3.14 ) is closed and convez.

The proof of the Lemma is discussed in the next chapter, where a more general case of the
given preposition is considered.
The next theorem gives the solvability conditions of Auzilialary problem {A). Denoted by (g, f)

the inner product of vectors g, f from R .

Theorem 2. Problem (A) is solvable if, and only if, the following inequality

max ,C} — max -4 + min ,S’U} SO 3.15
”gﬁmnk=1{(g )~ 20 2 } (3.15)

holds.
Proof. Sufficiency. Suppose that the condition (3.13) is valid, but the problem {A) has no

solution. Then, RN K(8) = @. The separation theorem for convex sets yields that there exists the
nontriviat vector g € R™, |lg|| = 1 such that

min max . 1
zel‘R(g’ Z) > zeK(a)(g’ Z) (3 6)
Hence
— + mi S 0 3.17
(g,¢ zgla?g)(g; z) Jémr(l‘}(g w) > ( )

that contradicts the condition (3.15).
Necessity. Suppose that the problem (A} is solvable. Then there exists and z that satisfy
the conditions (3.12)-(3.13) such that the following equality {g,¢) + (g, S@) = (9,7) holds for each

vector g € R™. Applying the maximum and minimum operations to the last yields the required

inequality

— i < (), .
(g,¢) zg%)(g, z) + urg[}r(l_)(g, Su} <0 (3.18)
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The proof is complete. &

Next we establish the maximum principle for the optimal control problem (3_1)_(3_4) hased on
the previous analysis.

Introduce the function A : R — R as follows

A(8) = Su)t.
(8) Mﬁﬁﬁ@@ £%$@ﬂ+£%p,w} (3.19)

It can be shown that the function A(8) : R — R defined by (3.19) is a non increasing continuous

function. Then the optimal value of the performance index can be characterized as follows.

Theorem 3. The control W® € U() is optimal for the problern (3.1 )-(3.4) #f, and only if, the

number 6° = J(u®) is the minimal root of the equation A8y =0.

Proof. Necessety. Let w9 € U(+) be an optimal control in the problem (3.1)-(3.4). Then uY
is the solution of the Problem (A) with 50 = J(u®). Therefore, Theorem 1 yields the inequality
A(8%) < 0. Suppose now that A(6%) < 0. Since A(d) is a continuous and monotone function then
there exists a number § such that § < 6% and A(§) < 0. In this case theorem 1 yields that the
Problem (A) has a solution with § = 8. Otherwise, there is an available control & € U() and a
vector Z € M satisfying the relations (3.11)-(3.12) for 6 = 5. Hence, J(u) < J (u°), that contradicts
the optimality of the control u0. Therefore, A(6%) = 0. The minimality of the root 8° = J(u°) for
the equation A(d) =0 can be proved by an analogy with the above.

Sufficiency. Let u® € U(-) be a control function such that the number 6° = J (u®) is the
minimal oot for the equation A(6) = 0. Suppose that the control function uC(t) is not optimal
for the problem (3.1)-(3.4). Then, there exists the available control function & € U(-) and a vector
5 € M such that the relations c— 2+ S5 =0and J(@) < J (u?) hold. This yields that the Problem
(A) has a solution for 8 = J(u), and hence, A(8) < 0. On the other hand, since the function A(8)
is monotone then A(8) > A(J (u®)) = 0, which contradicts the minimality of the root §0 = J(u9).
Consequently, it yields that ©0 is an optimal control, which completes the proot. L

Let ¢ = (g%, g € R™ be a maximizing vector for A(8%). On the interval T = [0,2] we

introduce the function % : R — R™ ag follows

k
wt)= 3 08(ri, 1) 7 S E< Tyan,d =0 L (3:20)
i=j+1

Tt is & simple task to verify that the function (t) satisfies the following differential equation:

Y yam, w0 w0 =g bk (3:21)

The optimality conditions for the optimization problem (3.1)-(3.4) are given by the following the-

orem.
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Theorem 4. If the number 50 is a minimal root of the equation A(8) = 0, then there exists on
optimal control wO(t), t € T in the problem (3.1)-(3.4) such that J (u0) = &° and for almost all

t ¢ T the condition
@ (Ob(O(t), 1) = mind/ ()b(v, 1)), (3.22)

holds. Here let ¢° = (g7, gl € R e o mazimizing vector for A(8%) in (3.19).

Proof. Since A(6%) =0, then Theorem 2 yields that the Problem (A) has a solution for §=6&°
This implies that there exist an available control u® € U(:) and a vector 2% € M that satisfy
the conditions (3.11)-(3.12). Hence (%) = J(u®) < &% The assumption J(u0) < & leads to a
contradiction with the minimality of the root 50, Therefore, J(u®) = 69, and, consequently, u?

is the optimal control for the problem (3.1)-(3.4). Next, the function w(f), t € T satisfles the

condition
(g%, Su’) = min (g°, Su). (3.23)
uel (-}
Moreover, if we assume that (g°, Su®) > m[i]r(l)(go, Su), then we have
uwelU (-
A < (g%, 0) — (g% 2%) + (4", 5uw) = O (3.24)

which is impossible since 80 is a root of the equation A(8) = 0. To prove the desired optimality

condition (3.22) we employ the condition (3.23). Then (we put below 7 = 0 for brevity}

£
(0 — mi O (7. £)b(u(t), t)dt =
uléll}l(l-}(g ,Su) ”Iél&r(l');ofgj (75, £)b(u( ):t)

k+1 Ti k » .
- Jél&%)z / z o¥ ®(w;, t)blu(t), t)dt = Jéﬁ‘(‘.) ‘ / b, ) =
T - 3=077 14
k+1 Ti ’
B jgg% in, (£)b(u(t), )dt-

From the last equation it follows that the optimal control u(t), t € [0,1]] satisfies the condition
¥ (Ob(u°(2), 1) = min ¢ ()b(v, 1)),
L

which completes the proof. #
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3.3 Robot Path Planning for the two dimensional case.

In this Section the results obtained above are modified to establish the relevant optimality condi-
tions for the planed path of the two dimensional robot mechanism.
Consider the robotic model described by the following equations

&1 = 3, To2 = Tds

(3.25)
g = —agz3 + baul, ¥4 = —GaF4F baug, t € [to, t"]
where a3 = 0y G4 = = ( some details of this model can be found in [34]). This model can be

written in the matrix form as

i = Az + Bu, (3.26)
where
o0 1 0 0 T
c 0 O 0
A — s B = f U = ul ; xTr = :L‘Z
0 0 —as 0 b3 ug T3
00 0 -—a4 0 b T4

We suppose that the set U(-) of the admissible controls is the piecewise-continuous function u(t) =
(us(t), uz(t)} such that u(t) € P Vi, where P C R? is a nonempty compact set. The fundamental
matrix ®(t, 7)(t < 7) for (3.25) is ®(¢,7) = F(t— 7) where

10 2(1—e®) 0
0 1 0 L(1--e™?)
F(s) = a4 3.27
(s) 0 0 %8 0 ( )
0 0 0 e~ ?
Then (3.9 ) yields that the solution of (3.25) is written as
t
() = F(t —tojmo+ | F(t = OB (3.28)
to

Next we consider the simplest case of the intermediate constraints, and let My, M; =1,.. k be the

given points from R2. We also suppose that the following collection o of the time moments
O'_——{‘TiGR'. =1 <7 < et =1} (329)

is given, and the robot mechanism could pass through the given sets M, at these moments, re-
spectively (see, also, the Remarks 1 - 2). In general, we do not except the case when there is no
admissible trajectory of (3.25), passing through the pre-assigned points M;, i=1,..,k In this

case the optimization problem can be formulated as follows:
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Problem 1. For the fized o € T find the admissible control u(-) € U(") that minimizes the minmas
cost functional of the form

s olrs) ~ Midoll i (3:30)

Here ||z(a)| denotes a norm of the vector z(y) € R? formed by first two coordinates of the
vector z € R*. These coordinates are chosen in accordance with the geometric character of the
obstacles K; for the robot’s path (see also the figure from the previous section). The introduced

cost functional
eol(m), .., a(n)) = max [ {a(m) — Mital (3.31)

is a special case of (3.4), and hence, the results stated by the Theorems 1-3 after the proper
modification can be used to solve the considered problem, in general. Most of the difficulties of this
application are generated by the need to find the vector g® € R™ that is used by the optimality
conditions and exploited for the solution of the conjugate system (3.21).

In order to simplify the required optimality conditions we apply the minmax theorem that
establishes the conditions to transpose the operation min and max. It is well known the following
fact

l|lzl| = @?’g’i(g’ T) (3.32)

where (g, z) denotes the inner product of the vectors g € R", z € R". Therefore, the minimization
problem of the norm cost function J (u) = ||z(}|| defined on the reachability set R(wzo,t]) of the
linear control system can be rewritten as follows

0 O % . .
= t = jasl max = m T .
J () = Il (1) 2R (z08) ugng(g /) e men(slc?,t;)(g @) (3.33)

The transposition of the min-max operation in this equality is valid if the set R{xo, 1) is closed and
convex. The desired property of the sets involved in this optimization problem can be established, in
fact, on the basis of the results from the previous section. Note that the analysis of the proofs from
the previous Section show that the convexity and density properties of the required reachability
set R(xo, i), ¢ =1,...,k are valid under the replacement of the measurable admissible functions
by the piecewise- continuous functions.

Next we show that the infinite dimensional minimization problem (3.25), (3.30) is equivalent to

a finite dimensional mathematical programming problem.

Theorem 5. The optimum in the minimization problem (3.80) is equal to g = Y\, a®), where

P(A2, oP) is the optimum of the following dual problem

X o) — AELI’?,a;CESk’ (3.34)
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and

A= {AQ), A2), ... AR} € LF, A(d) € L [F=LxLx..xL L={¢eR, <k

k—times

{aERk oy > 0, Zaz-l}

i—1

+1 r
Y(ha) = Zam (A ()({® (7, to)zo}2 — M)l + me ] Zam (i) {®(7i, &) Buadg
i=1 i—1
see from the previous Section that for every @ = 1,...k the reachibility
mpact set. It is known that the

Proof. It is easy to
set R(zo,7:) C R? of the system (3.25) at the moment 7; is a co

following equality

e i{e(m) — Miyall = Lneaggg a;||{z(m) — M}l (3.35)
is valid. Then the formula (3.33) yields
o = ugg?) max [|{a(m) - Myl =
i g Lt~ Mol :;%‘e)aeskz el () = ) =
= max Join 4 Z ﬁ}l-'lﬂfl ailts, {z(r) - Mi}(2)) =
- max s [Zai (A (8)({ (7, to)wo}2 — M| + Z min / :H gam’ @ (m, &)Bu}gdﬁ]

This completes the proof. ¢
The theorem 4 yields immediately that the optimal control for the problem (3.30) can be

characterized by the following condition.
Theorem 6. Let X0, ¢ 0 pe gn optimal solution of the problem (3.84). Then the optimal control

function u0(-) on the each segment [7g, Tg+1ls 4= 1,...,k satisfies the following condition

q
> aild A(§){@(r,£)Bu’(E)}2 = mln(z 0 0(6) {8(ri, )BO}2), € € [ror Tl
=

in the minimization problem given by the Theorem 3 is deter-
£ the set P of the available control values. Usually,
lyhedron etc. Without loss of generality a we

It is obvious that the progress
mined, in part, by the properties and the shape o

this set is presented by the simplest form— ball, po
put P={u € R?: |jul] € s} In this case the optimal control ud(t), i=1,21s defined
R L ;®(r;, 1) BA()°

ul{t) = — ; — .
M0 =S BT
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The theorems above show that the optimal solution for the system (3.25) can be obtained via the
solution of the following minimization problem:

yOva) —  max (3.36)

This is a mathematical programming problem. Let 20, a0 be a solution of (3.36). Then substitut-
ing these values into the obtained above formulas for u)(t) we receive finally the required optimal

control function of the original optimization problem. 4

3.1, Tllustrative example. Next we demonstrate the obtained results for the optimization
problem (3.25) in a particular case. For sake the brevity we consider the robot mechanism that

could pass only through the two points My, Mz . In this case we have

10 + 3o = (1~ €™
{®(mi,t0)x0}2 = “13( ot )
z90 + za0g; (1 - €7 °)

_ (bsE (1 — e (8
{®(7;,£)Bulf)}2 = (b%%(l - e—“*!(f"g))ul(é))

Let
A(?,) (Al‘H A2g) s ((.th, w23) T.- = 1 2
and
21 =z10+ ——(1 gm0y —uny, 23 = T2+ E@(1 gmaln o)) g,
z3 = T30 + @{1 e o3 t0)) gy, 2a = a0+ %19(1 — graalmmio)y — gy
4

Pl(Oi1 A) = a1(Anz + Aaze) + oa(Aizzs + Agazy)

Then the function ¥(), @) can be written in the following form
7 b b
(A a) = P, A) + fmin o [A11-—3(1 G Ara—(1 - e~0a (=8 Yy,)dE +
ueP a3 a4

to
=t

) by —aal(— by =
A 1 aa{m1—£) A 1 a4{m1—£}
+ f gg}}{al[ 1 Cr13( e Yug + 12(14( e Jug] +

T1

+a [Amz—3(1 — ey + Agg?—(l — gmaal=EYy,) ) (3.37)
3 4

Now we find the minimum under integrals in (3.37).

A) For the given A and for each fixed £ from [to,T1] we have the minimization problem

fi(E)ua + f2(E)ug -~ min (3.38)

(wr1,u2) EP

where

b —as(r— b .
f1(£)=a11\.11-£(1—e 2(n=8), fB(é):alAui(l e~oaln—£)
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The function (3.38) is linear with respect to wuy, u2 variables and hence, its minimum is achieved
at the boundary of the compact P . Thus, the optimal control functions at the first time segment
[to, T 1] are :
800 = 2 e = k2 <
VG FE VFE) + (8

B) For the second segment [r1,72] we have the following minimization problem

< T1.

u? +u% <x?

f (01(E)n + gol)usldf — _min

where

gi(€) = fi(&) + f3(6),  92(8) = f2(&) + fa(E)
b b
fo(8) = anhn (1= e7279), fal€) = crhz (1 - e 79)
Hence for the second interval [r1,¢*] we have the following optimal control functions

91) 0=k g2(£)
93(6) + 95(£) g2 (&) + 95(£)

It should be noted that the all functions f;(t), g;(t) under consideration are dependent on the

parameters Ayi, As; and «;. Substituting the obtained control functions into the formula (3.37) for

wi(t) = —k

WA, ), we will receive a certain function of parameter A and c. Finally, to obtain the required

optimal, control the following mathematical programming problem

o) > max (3.39)

should be solved. To simplify the calculation of the function (A, ) further, we can consider the

case where the set of admissible control values P is given in the polyhedron form
P = {(u,u) € RZ: fur| <1, Jugl <1} (3.40)
It is easy to verify that in this case the optimal control functions are
W0(t) = —signfi(t), t € [to, T, WO(t) = -—signgi(t), t € [, 7], i=1,2 (3.41)

Since the signfi(t) is determined, in fact by the sign of the coefficient aa,aq then the function

¥(), @) for the minimization problem (3.39) can be easy calculated.

3.4 Conclusions

It is shown above that the research of the extremal problems with state constraints have meet both

essential theoretical and numerical difficulties. As it is well known, for some cases optimal control
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problems with state constraints can be approximated by a sequence of optimization problems
without phase constraints. In particular, the principal elements of the planning of the robot’s path

can be stated with help of the simplest linear optimization model of the form

: d
J(u) =cz(t) — max, 9 _ Az +bu, 2(0) = 20,, Ha(t") =g, t€ 084 (3.42)

where instead of the collection of the intermediate sets M; C R™ it is satisfactory to consider the
single terminal set of the form Hiz(r) =gi, 1= 1+ k. The the robot’s path in the presence of
the obstacles can be realized by a step-by-step optimization procedure for a simple control problem
(3.42).

In general, the planning procedure can be detailed as a multistage or repetitive process. The
generalization of these results for the linear repetitive processes is presented in the next Chapter,

some preliminary results of which were reported in [23, 44].
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Chapter 4

Discrete approximation for the robot

path planning motion

In this Chapter the results obtained above are modified to develop the well-posed discrete approx-
imation for the planning of the robot’s path. We formulate the path-trek problem for the robot
mechanism that could cross the given domain with the safety clearance along the given obstacles.

Some aspects of the problem statement for this problem were discussed in [34].

4.1 Robot dynamics and its discrete model

The robot model under consideration is described as follows

migi(e) + cigi(t) = hiui(t), i=1,2 (4.1)
where mé are the inertias of the uncoupled axes, ¢, h* are parameters of the de motor drives, and
uf are the motor control voltages. The beginning and ending robot positions at the points AB

lead to the conditions g(0) = ga, ¢(T) = gz and §(0) = ¢(T) = 0. The energy required to transfer
the payload in a fixed time 7" is

T 2 . . - .
J(w) = [0 SO0 — Al O (e, (4.2)
3=1

where +* > 0 are the motor parameters. To the optimal control problem (4.1)-(4.2) we add special
geometric constraints corresponding to the avoidance of obstacles Ki,i = 2,...,m (see Fig. 1).
These state constraints follow from the obvious requirement that the robot, denoted by Ki(t)
does not crash. Note that the set K1(t) describes the space occupied by the parts the of robot
mechanism and their working area i.e. rotation and translation due to robotic motion, in general.
In the motion course, this area can be variable, and hence, depends on the current position at the

moment ¢, in fact. This requirement can be presented in the general form :

e,  Jin {dy — di(t)} <0 (4.3)
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where d;(t) denotes the distance between the robot K1 (t) and i — th obstacle K at the moment ¢,
and d} denotes the safety distance.

We present the above in the standard form: minimize

J(u) = fo i i[(ui (£)? — v'u' (£)z* ()]t (44)
i=1
over the solution of the differential equations
ri'l = &9
4 Lo = —0273 + baun (45)
Ty = T4

km4 = —a4%4 + batto, L € [0, T]

where g1 (£) = 21(¢), @1(£) = 22(t), @(t) = 25(t), da(t) = wa(t) and az = 2, a1 = 2, by = 2 by =
2

Now we construct a discrete model for the problem (4.4)-(4.5). Let N > 0 and 7 be a mesh
on [0, 7] with N intervals and mesh points {rg, 71, o T} with 75 < 741,58 € {0,1,.., N =1}, 0 =
0, 7w = T. Next we consider a uniform grid with 7, = STVI:

Denote
Py = {® = ($1,92) € C[0, T}, [91(8)| < a, |$2(8)] < B}, t€[0,T]

where C[0,T] means the space of the continuous functions on the interval [0,T], and ¥y, ¥ are
the piecewise - linear functions on the mesh Tly. Tt is easy to sce that in order to determine the
functions from Py, N + 1 points are required pg, pt1, .., i (but every point p; = (914, ¥2i) has two

coordinates and, hence, we in fact need 2N + N points, in fact):

N sT
J;(t) = 55 + ‘T’(t_ N

Y5 sq1— ¥y ), 5=1,2 (4.6)
for any 7, < t < Ter1, s = 0,N —1. It is obvious that the requirement p; € Py leads to the
conditions | 91 |[< @, | ¥2) |[< B, i =0,..., N. Replacing now the derivatives in (4.5) by the Euler
finite difference we have the following difference system of equations

(235 4 1) = 23(8) = (rain — 7)),
3":12\{(5 + 1) - :L‘?V(S) = (Ts+1 - Ts)[GEm?\T(S) - bl'ﬁl(s)]v (4.7)
"E?\f(s + 1) - ‘T'?V(s) = (Ts+1 - Ts)i'%\r(s)r

| zn(s +1) — 2% (8) = (Toq1 — Ta)[aaziy(s) — bad2(s)],
with the initial condition

(2} (0), 23(0), 23(0), 23,(0)) = (2,0,0,0)
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For the given piecewise-linear control function 5 = (¥1,92) € Py let xh(8) = {z1n(s) o Zan(s) )
s=1,2,...,N bethe solution of the difference equations (4.7). Next, to obtain well-posed discrete

counterparts for the max-min constraints, we introduce the following constraint functions

max min @ (7, Ty <en, 1=2,...,M where ey — 0, N — 00 (4.8)
TETy i=2,...,m

where the functions ®; n : PN X [0,1,...,N] — R are defined as

®; n(n,8) = dis — duilz i (s)) (4.9)
and where
dii(zh(8)) = I;glil{\ly ~ a4\, e Ka(@k(s), # € Ki} (4.10)

denotes the distance and dy; s the safety distance between robot Ki(z(t)) and the obstacle K at

the moment ¢ = Ts.
Remark. In fact, the theoretical results of Chapter 9 devoted to the optimization with min-
max state constraint says that the correct discrete approximation uses the disturbances of all state
constraints. Note that the given disturbances of the constraints are also needed to guarantee
the the set Py of the admissible discrete control functions is non-empty. In the course of the
pumerical experiments we will investigate the influence and effectiveness of different variants of the |
disturbances.

To calculate the cost functional value, we exploit the following facts: 1) the control n(t) =

(91(t), P(t)) is 2 piecewise linear function on the grid T given in the form(4.6); )
2) using the obtained collection points 7 (0}, Ta{1): -+ 27, (N) we construct & discrete trajectory |
for the robot path as the following linear functions on every segment 75 ST = Ts+1 § 5 0, ..,N-1L
N sT
sa(t) = 4(6) + (6 — )35 + 1 = 756D (4.11)
N sr
z4(t) = 2] (8) + 7 (¢ ~7 ) (@als + 1) — z{(s)) (4.12)

Thus, substituting the obtained functions (4.11)-(4.11) into (4.4) leads to the calculation of

f[(u"(t))z—'yiu’:(t)m%(t)]dt where [ra,7os1) = |

Ts

sT (S+1)T]
N N

Then we have separately

Tstl g1

V)24t = __,_T__— f i I_V_ _ _'?2 i _ .90 2 i
[ wore= yom = | (%7 L) Wi — 98] A9+
Ts 195
N, T T e
s g .
— t——’— '!9" _191 - —_—— 2 —
Vs

T ¥° . 1.1 i \2 iy2 i g
N(qgisﬂf i){?’ \“'-‘*:H 3 |19;‘sl = 3((193+1) + (%) + o1V
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The second integral is

— (s-i-;)T
[ wiosom= j)[ + M- T - )Hwi+

19:;)] [osi-ra(osiﬂ a] ol [ﬂ*ww f [0y — ) + (ers — 7O

/ 52(735+1 - "‘913) (fﬂis-l-l 3)d§] N [19‘ sc* +

i i H L i ) i
(§s+lms ) ﬂsfﬂi I 19’é$3+1 19558_5.) + 'é (19:+1$:+1 - ’914»15”; - 19:“%4—1 + 1959::.')] =

N1 oo
=77 [3 o210y + 3312"19 + 65’333-119l += 5'3211954"1]

N

Finally, we receive the following criteria value

2 N-1
Jw) =+ Z S A (4.13)
1.—1 s=0
with
Agi = %(wg 02+ (902 +195+119*)
= {3 ARLAREL o2 4 L2, 0, + LaZo; ] (4.14)

where the required discrete variables z2* are determined by the difference equations (4.7) and are

given by the formula

T )
2? =z (1 + W-az) - (4.15)
T T s—1 T 5—2 T
~5h [(1 + 502) 9+ (1+ 792) B4 (1 )P +19;_1]
and
gt = af (1 + %m) (4.16)

T T 5 T s—2 T
[ S Do g vt
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Thus, we received the cost criteria as some function Jn(n) = RN(%],TQOQ,_,_,ﬂNl,ﬂNg) of the
unknown control parameters (Fo1, 911, o On1) and (Po2, P12, -, , Fava).
Finally, we construct the discrete approximation as the following finite-dimensional optimization

problem

P ' R(Yo1, 002, s On1, D ,
(Poc,w) o {ﬁsrlfligg}EPN (Yo, Yoz N1, ON2) (4.17)

subject to

Eelg‘}f; i=r%11_i3m<11¢,N(n, 7) < ey, at ey — 0, N — 00 (4.18)

Remark 2. The formula above shows that in order to calculate the distance function we need
the functions #1(¢), z3(t). They can be defined in a similar way as the function @2(t), za(¢} from the

difference equations (4.7) and, hence, these trajectories can also be approximated by the following

linear functions on each segment 7s ST < Ts41 §= 0,...,N—1:
N T
a(t) = 3(s) + (b~ Fp)(a(s + 1) —a(s)) (4.19)
N sT
ra(t) = 2a(s) + () (@als 1)~ 25(6)) (4.20)

where the collection of the mesh points z1(s), z3(s) is given by the following recurrent formula

z1(s+ 1) =xz1(8) + %9&'2(3), za(s + 1) = z3(s) + %m(s), s=0,...,N—1 (4.21)

and the mesh points z2(s), z4(s) are determined by the formula (4.15)- (4.16) given above.

The problem (4.17)-(4.18) can be rewritten in the following standard nonsmooth optimization

form
min f~ (z, y) (4.22)
subject to constraints
Nz 0 <0 (4.23)
where
z = (do1, %11, -y ¥N1), Y= (D02, P12, - ON2),
(2, y) = B (D01, 911, .-, N1, P02, P12, -, IN2);
N (g, €) = max{(gs(®, y, €), fos(2), f3s (1) 5= L,---, N (4-24)
and

gs(z,y,€) = izré}:lfljm{@i,N,e(ﬂm, D11, .., ON1, P02, V12, - ON2): T}
faula) = max(a— Jzsl)y 5=1,.-N
Fonly) = max(B = lysl), 8 =1, N (4.25)
(4.25) can be solved by the numerical methods [6] based on the nonsmooth optimization theory

[10]. The results of numerical tests will be reported in due course.
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4.2 Test optimal control examples

To verify and to check the developed numerical methods a collection of the testing examples 15
needed. In contrast to the well known optimization problem in the absence of state constraints,
the collection of well tested optimal control problems in the presence of state constraints is very
poor. This fact is explained by the serious difficulties in finding the exact solution in the functional
spaces. Below we give a short description of two simple examples where the exact optimal solution

is known. A detailed description and the proof of their optimality can be found iu [39].
Example 1

Let the control function be partioned on the two components u(t) = {u1(t), ua(t)} where the
first component |ui(t)] < 1is bounded and the second ua(t) is free.

Consider the model of the form

3
J= L [21(8) + %ug(t)] dt - min (4.26)

] ,U2

over the solutions

£1(t) = z2(2),

(4.27)
Ba(t) = u1(t) + up(t), t€[0,3],
subject to the constraints
z1() < 200,
1) = (4.28)
—E1 (t) g 01
lm() <1, te [0,T]=[0,3] (4.29)
with initial data
:El(O) = 1, :EQ(O) = 2/3, UQ(O) =0. (4.30)
The discrete model for the model above is
z1(5 + 1) = z1(s} + hzal(s},
1(s + 1) = z1(s) 2(s) (4.31)

2o(s + 1) = z2(s) + hlua(s) +ug(s)], s=01,2,.... N,
Here we replace the derivatives by Euler differences as

m(Ts+1) - m('rs)

#(t) = .

and denote

x(7s) = #(5), wr(s) = u1(7s)s uz(s) = ua(7s)h = %a 0= <n<... CTN-1S7N =T
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The solution of difference equations is

= z,(0) + sh - 22(0) + h? Si:z(.s — i - 1w (8) +ua(d)), s =2

z1(s)
T (1) = (0) + hmg(O) (4.32)
s—1
za(s) = 22(0) + b 3 (w (i) + u2(), s=12- N,
i=0
Finally, we need to minimize the cost function
3 N-2
J(v) = 2T21(0) + T°22(0) + 53 Sy (N-1-14) Y2 (ua (3) + u2(i)) +
=0
o N1 )
+taw ?;;0 [(uz(z) (i + 1)) — ua(Bue(i+ 1)} — min
under the state constraints
max{$1(0)+—wac2 E (s—i—1) [ul(a)+uQ(z)]—200 s =2,3,. N}go,
mgx{ — [ml([l) + %:1:2(0 )+ Wg Z(s — i —1)]ui() —I—uz(i)]]s —~2,3,...,N} €0
i=0
max {1 — |u1(s)], s = 0,1,....,N-2} <0
&
Optimal control for the initial problem (4.26)—(4.30} is
ul(t) = —1, t€[0,1);
Q) = +1, te[1,2); w3() =50, t€ (03] (4.33)
ul(t) = 0, te [27 3)1
and the corresponding optimal trajectory is
208 = —t4/12+ 83/2 — 3t /24 2¢/3 + 1,
1) / / / / t e [0,1); (4.34)
2Q(t) = —t3/3+3t7/2 - 3t + 2/3

{x%’(t) — 412 +3/2 - 12/2 — 4t/3+ 2, Lo [L2) {m?(t) =0, re23); (4.35)
0(t) = —t3/3 +3t%/2 — t —4/3 T3ty =0

The figure above illustrates the optimal trajectory for the initial problem.

Example 2
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Consider

over the solutions

subject to the constraints

with initial data

Discrete model is as follows

it frajedters tor the ot prosieen
. I :

Figure 4.1: Optimal trajectory

3
J= 2/ 1 (t)dt — min
0 U

&1 () = z2(t);
ia(8) = ult), te[0,3],

z1(t) < 200,
—ﬂ'}]_(t) S 07

()| < 1, t€ (0,77 = [0,3]

z1(0) = 1, x2(0) = 0.

z1(s +1) = z1(s} + hza(s),
zo(s + 1) = z2(s} + hu{s), s=0,1,2,..
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Here we replace the derivatives by Euler differences as

E() = m(”'s-i—l)h— 37("'3)

and denote
. . . T
a(rs) = x(s), vs = ul{Ts) h=7p b=mp<m<...<mvaSN=T

The solution of difference equations is

z1(s) = z:1(0) + shz2(0) —|—Si2(s — i — 1y, 522
i=0
£1(1) = 21(0) + ha2(0) (442)
s—1

zo(s) = z2(0) + R S, s=1,2,.. , N,
=0

are needed to minimize the function

3
J(’U) = QTSE]_(O) + T2$2(0) + %_3- {(N 1)2'00 + (N — 2)2'!11 + ... 22'UN_3 —+ UN_Z] -— n%in(4.43)

Finally, we

under the state constraints
max{ml (0)+ % T 0(0) + 12 Z (s — i — 1)w — 200, s=12.3,...,N} <0,
mgx{ m1(0)+—xg({) = Z(Saiﬂl)vi]s=2,3,...,N}SO (4.44)
msax{lflvsl,s=(},1,. ,N — }50
Optimal control for the initial problem (4.36) —(4.40) is
W) = -1, t€[0,1);
wO(t) = +1, t € [L,2) (4.45)
w0() =0, t € [2,3);
and the corresponding optimal trajectory is
2y = —t2/2 41, 2008 = —12/2 — 2t + 2,
O / e [0,1); i) f ¢ e [1,2);
xQ(t) = 1 £J(t) = —t -2
mg(t) =0,
, e (2,3) {4.46)
x3(t) =0
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4.3 Conclusions

This Chapter has used the well-posed discrete approximation to design the umerical methods for
solutions to the optimization problems with max-min constraints. In common with other discrete
a,pproximations, we present the theoretical background to construct the discrete schemes with cost
value and trajectory convergence. 1t 18 conjectured that our approach, accompanied Dy modern
methods of nonsmooth optimization 110, 61] and control theory [13] will work very well for optimal

control problems with special state constraints that ensure obstacle avoidance.
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Chapter 5

Optimization problems for linear

repetitive processes

The first part of this chapter uses the classic approach to investigate the traditional optimal control
theory problems for the repetitive dynamics model. It is well known that the separation theorem
for convex sets is quite a useful approach for studying a wide class of extreme problems. Here we
develop this method to establish optimality conditions in the classic form of maximum principle
for multipass nonstationary continuous-discrete control systems with nonlinear inputs and nonlocal
state-phase terminal constraints of the general form. The obtained results are typical for classic
optimal control theory. However, their numerical realization is not a trivial task. For this reason,
in the next sections for the stationary case of the system model and the particular case of the
constraint and the cost functional, we will develop new optimality and sub-optimality conditions
that are more suitable for the design of numerical méthods and further applications. In contrast to
the classic approaches of optimal control theory,in the second part in this chapter we will use the
idea of the constructive methods reported in [29] and extend this setting to the continuous-discrete
case to produce new resnits and constructive elements of optimization theory for the considered
repetitive systems and also develop its relevant basic properties which can be of interest for others
purposes. It is shown that the obtained optimality and e-optimality conditions are closely related to
the corresponding classic results of maximum and ¢ maximum principles. The gensitivity analysis
and some differential properties of the optimal controls under disturbances are discussed and their
application to the optimal synthesis problem is given. The obtained results yield a theoretical
background for the design problem of optimal controllers for relevant basic processes. Some areas

for short to medium term further research are also briefly discussed.
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5.1 Notation and Model Definition

In practice, a repetitive process will only ever complete a finite number of passes. Hence we consider
repetitive processes modeled by a system of linear differential equations with variable coefficients.
Let T = [0,t*] be a given interval of values of the continuous independent variable ¢ € T and
K=1{,2,..,N }, N < -ee be a set of values of the discrete variable k € K. Also introduce the
control and state vectors as uk(t) € R™ and zx(t) € R" respectively. Then the repetitive processes

considered in this paper are described by

dmﬁft) — A)ze(t) + DBz 1(8) + balur(®), ), kK tET (5.1)

where the last nonlinear term represents the input signal actually applied to the process. To
complete the description, it is necessary to specify the boundary conditions which are here taken

to be of the form
2,(0) = afk), k € K, zo(t) = B(t), teT (5.2)

Note also that it is possible to augment the above model to include the fact that the pass profile
can be a vector valued function of state dynamics.

Now we define the class of available and admissible input signals for the above model.

Definition 6. We say that the function v K xT — R™ is available for (5.1) if it is measurable
with respect to t for a fized k € K, and satisfies the constraint u(t) e U, k€ K, for almost all
t € T, where U is a given compact set from R". Also the function z : K x T — R" is o solulion of
(5.1) corresponding to the given available control ug(t) if it is absolutely continuous with respect to
t & T for each fired k € K and satisfies (5.1) for almost allt € T and each k € K

We denote the set of available controls by U(-) and use M;, M; R, i=1, 2, ...,1 to denote

the given compact convex sets.

Definition 7. The available control ug(t) is said to be admissible for the process (5.1) if the
corresponding solution 2i(t) = zilt, o 5, u) of (5.1) and (5.2) satisfies

xen(mi) € M;, = 1,2,...,1 (5.3)
where 0 < <M <. <TL= +* are specified elements of T.

The optimal control problem considered in this paper can Dow be stated as: Minimize a cost

[unction of the form
J(u) = plzn(m), o (T2); s zn (7)) (5.4)

for processes described by (5.1) and (5.2) in the class of admissible controls uk(t) € U(-).
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We also assume that: the 7 X7 rmagrix functions A(t) and D(t) and the o % 1 function G(t)
are measurable and integrable on T', the function b: K x U X T — R™ is continuous with respect
to (u,t) € U x T for each fixed k € K and the function ¢ Rl - R is convex. It is easy 10 se€
that these conditions guarantee the existence and uniqueness of an absolutely continuous solution
of (5.1) and(5.2) for any available control ug(t). To guarantee the existence of optimal control,

throughout this paper we assume that the set of admissible controls is non-empty.

5.1.1 Reachability set and its properties

To solve (5.1) and (5.2) we require the n x n matrix function ®o(1,t) be defined by the following

equation

D) _ a8t = 55)

where I, denotes the 1 X7 identity matrix. Also it is well known, s, for example, [36) that the
entries in the matrix ®(r,t) are absolutely continuous functions defined on the set T % T. Therefore,
there exists a constant 0 < C < oo such that @(r )l < C for any (r,t) € T X T, where || - ||
denotes the standard matrix norm. We use H?(0,t*), where p = 0 is an integer, to denote the §
set of all functions f (0,t*) — R which are absolutely continuous on each closed sub-interval
[, ] from the interval (0,t}) and have almost everywhere integrable derivatives of order up to p on
(0,£%). Also it can be shown that HP(0,t") is Banach space with the norm Kl f: @1, and
the following inctusions H? (0,t*) C C? (0,¢%) C 14(0,t”) hold, where CP(0,t*) denotczeg the space of

n % 1 vector functions which are continuousty differentiable on (0,t*) up to order p, and L1 (0,t%)

the space of n x 1 vector valued functions which are integrable on {0, t*).

Now define the mapping P : L1 (0,£*) — H'(0,t") by
PF)(r) = ] o(rH DO f@dE 7€ 01 (5.6)
0

and its power composition Dk gEH0,t7) — H*(0,t*) as (PEfYT) = PP )T, TE (0,t%).
Also define the mapping @ : Ly(0, %) — H'(0,£7) by

@) = [ o0 fOdt, T OL). (5.7)
0

For ease of notation, the function bp(ux(t), ), t € T is subsequently denoted by bu(k).
For the given available control u € U(-) the corresponding solution of (5.1) and (5.2) at t = Tj

on pass k= N can now be written in the form

N-1
an(ry) = (5, 0alN) + S (P'e(, 0))m)edN = i)+ (PVB) () +
=1

N-1
Z(,PQQbu(N - T’)(T])) + f@(Tj,t)bN(UN(t),t)dt, N>1, J = 1:21 e '717 (58)
‘i=1 0
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) denotes &(t,7) as the first variable ranges OVeT t € T with the second variable fixed

where ©(, 7
- CL)T e R, where

at T €T, Alsoc= (c1,€2,--
N-1
() + 3 (PN~ PEAE T Lo ok 69

i = (I)(Tj,
=1

and introduce the mapping S UE) — R™ as Su = (St Sott, - - - ,Gu)T where

7y
f@(Tj,t)bN(uN(t),t)dt, j=1,2, 0k (5.10)

0

noted by Problem (A) whose s0

N--1

Su= Y (PQbu(N — D)+
j==1

lution will he used to golve the

we can state the following, de

Then
optimal control problem defined above:
Find necessary and sufficient conditions for
z=c+5u (5.11)
to hold subject to
(5.12)

se M, p(z) S0 seRY, uelU()

where M = My % Myx . ..xMC RY and disa fixed number from R.

Problem (A), introduce first the following sets

To solve
R={z cRM, z=c+ 5% we UMY K(6)={z€R“l, L e M, p(z) <6} (5.13)
Problem {(A), to have a sotution

y and sufficient condition for
a which

1 form of this geometric criteri

Then it is easy to see that the necessar
tablish an analytica

s RNAK@O)#0. In the following, we €8

1 theorem for convex sets.

f obtaining the required properties of the sets R and K(6). Then

ed to the convexity and closeness of the set R which
o we extend the resutts for 1D

is based on the separatio
Consider first the problem 0

cal difficulties here are relat
he separation theorem. Her
to overcome these difficulties.

the main techni

must be established in order to apply b

(see, for example, [7]) to & repeti
function and jntroduc

tive processes in order

systems
e the following set

Let f: U xR? be a continuous

i=1,2,.- 0k (5.14)

T
g Lo (aom) ERM 2= [ staa vV
0
<7 =1 and V() is the set of all measurable
¢ all t € T. Then the response formulas (5.8)

ablished by studying analogous

where 75 are given points such that 0 <71 < T2 <.

functions v = T — R" such that o(t) e U for almos
and (5.10) show that the required properties of the set ¢ can be est

properties for the set 2.
Now we have the following results.
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Lemma 7. Let f : U xT — B™ be o continuous function. Then for any measurable function
v(-) € V(-) and for a gwen number ¢ > 0 3 a partition of the interval T by points 0 = sp < $1 <
< 8 = t* such that

m—1 841

O RICORIRMUCRIIEEE (515)
=0 3,
holds for any T; satisfying 5; <7 <841, § =0,

Proof. This is based on the so-called C-property of measurable functions [48] and, in fact, follows
immediately on some routine modifications for continuous functions given in [30]. Hence the details

are omitted here.

Lemma 8. Let f: U xT — R”™ be a continuous function. Then the closure Z of the sel
4]
Z = Z=(Z1,...,ZI)GRM:Zj=ff(’b‘(t),t)dt, UEV(')i j=1,2,...,l (516)
D

i85 CcONUVET.

Proof. On using Lemma 7 this is reduced to a stight modification of the results (30, 7], and hence

the details are omitted here.

Remark 3. Convesity of 7 is guaranteed by the presence of the integral terms in Z. This fact,
known as hidden convezity, is an @mportant property of conlinuous lime control systems which

follows, in general, from the Lyapunov theorem on the convexity of the range of an integral operator

acting on veclor measures. This result is often used, see, for ezample, [7, 45}, to prove the convexity

of the reachability set for control systems which are linear in state variables.

Formulas (5.8), (5.10) state that each integral expression in R contains an available control
u(s,t) with s fixed single value of the discrete variable s and, therefore, is independent of the
others. Hence, to prove that R is a closed set it is sufficient to show that a set formed by controls
with some fixed value of the discrete variable k, k=1,..., N is closed. The simplest case is often

to congider k = N and then the set to be studied has the following form
Ry=1{z€ R™ : z; = a; + Ljv, v(yeV{), 1= 1,2,....1% (5.17)

Here a; = ® (75, 0)a(N), and the mappings L; defined on the set V() are given by
J j ]

Liv= f B(r;, H)g(v(t), )it
0

where g(v(t),t) denotes the function by (un (1), 1), t €T
Lemma 9. The set Ry defined by (5.17) is closed.
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Proof. Suppose that the vector sequence {z"} = {{#T, 'Jz?)T}ﬂ Z8 € Ry, 1= 14,...,m,
converges to a point z* = (21, z)T € R™. Then there exists & sequence {v"()} of functions
from V() such that 2 = a; + Lyv*, j=1,...,1 and we show that there exists a function v* (%),
4+ & T from V() such that zj =¢; + Livt, j=1,...,L

Consider the set R(an,0) ={y € Ry =a1+ v, v € V(-)}. Then it is easy to see that
R(an,0) is the reachability set at £ = 71 for the following system

J(8) = Ay + g(t).1), y(0) =), ve v(), teT (5.18)

Also, it is well known, see, for example, [45], that R(an,0) is a closed set. Hence, for the sequence
{27} — 25, n — % z? € R(an,0), n = 1,2,... there exists a function v € V() such that

=0+ Lyv!. Now introduce the sequence 25 = a2 + Lov™, where Gz = (12, 71)2] and Lov™ =

T2
f (I)(fg,t)g(u“(t),t))dt, je 2} is the solution of the system (5.18) corresponding to the function

T1
»™(t) and initial condition y(r) = z}, where Z; and v"(t) are restricted to the interval (73,72}
Next, we show that — 25
It is known [36] that the fundamental matrix (7, 1) satisifes B(r, 8)®(s,t) = (T, t),0<7< ,

s < t < t*, and the Cauchy response formula now yields

z = (7, 0)a(N) + f@(’rg,t)g(v”(t),t)dt = ®(7, 1) [@(Tl,ﬂ)a(N) +
0

/ B2, 000, D] + [ 0000 = B S [ a0, 0a
0 n £A
Then

2 = &(r,m)7 + /‘I?(Tz,t)g(v“(t),t)dt.

Therefore
12—zl < Wz — 2l ez - Al <l - 2l + iz — Al

where C = ||@(r2, 11)[| <0 182 constant. Since 2§ -+ 25,28 — 23 + follows immediately from the
last inequality that also 7% — z3.

Introduce the set
Rizt,m)={yeR" :y=a+ Lov, v e V()} (5.19)

Then it is obvious that R(z},m) is the reachability set at t = 72 for the system (5.18) and is
restricted to the interval [71, 7o) with initial condition y(m) = z}. As shown above, R(z},m) is &
closed set. Therefore, for the sequence 75 — z3, n — oo such that 25 € R(z},m), there exists a

function v2(t), m <t < 72 v? € V(-), such that 25 = &2 + Lov?
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In an analogous way, it can be established that on every interval {75 5415 there exists a function

eV, i= 1,...,0— % such that 2,1 = @j+1 + f,j+1vj+1, where

Ti+1

&j+1:‘1’(1’j+1,7j)2;; Liywv= f @(Tj+lat)g(v(t)1t))dt

7
Finally, we define on 7 = [0,1*] the function

Ul(t), o<t <y

vt} T <t < T

et (E) =

HE), moaStst

where clearly v* € V(). Also, it follows immediately from
3

2 = a;+ _ij’t)j = &(7j, ijﬂz;_l + f @(Tj,i)g(vi (t),t)dt = @(Tj,?’j_l) {@(Tj—ls Tj-2)z;—2

+ ]@(ijht)g(vj“l(t),t)dt]Jr f ‘I’(Tjat)g(vj(t)at)dt=<I’(Tj,’rj—2)z}’-2
+ /@(Tj,t)g(vj“l(t),t)dw f @(Tj,t)g(vj(t),t))dt=---=¢(Tj,0)a(N)

Tl

+ / B(rs, Dg(v* (6), )t + f D(ry, D@ D+ [ B(ry, gl (6), )t
4] Ty Ti—1

a5 0aN) + [ 87D .08 = Lo, G=L b
T0

v*(t) is the required function. Hence z* € Ry, 1. & Ry is a closed set and the proof 18 complete.
m

Note. In the cases when k # N, then the additional terms in the formulas for a; and L; in the setb

R, do not change the essence of given proof.
At this stage, we have established that R and K(8) are closed and convex sets and the next

result gives the solution of Problem (A), the mner product of vectors g and f from R™ is denoted
vy g* -

Theorem 7. Problem (A) has solution if, and only o,

T e . T
max ¢c— max g -~ min Sul <0 520
Hg“mnlzl{g ZEK((S) g 'u.EU(.) g } ( )

holds.
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Proof. Sufficiency. Suppose that the condition of (5.20) s valid, but Problem (A) has no
solution. Then, RO K(8) =0 and the separation theorem for convex sets yields that there exists

a nontrivial vector g € R, ||g]l = 1 such that

: T T
ming' z > max ; 521
min g ook g% (5.21)
Hence
glc— max g%z + min g’ Su >0 (5.22)
2K (8) wel7 (")

which contradicts (5.20).

Necessity. Suppose that Problem (A} has a solution. Then there exist @ and Z satisfying (5.11)-
(5.12) such that g7 ¢+ gl Su = g7z holds for each g € r™. Taking the maxiraum and minimum
respectively of the two terms in this last expression now yield

T T : T
c— max g 2+ Su <0, 5.23
e g TS 629

as required and the proof is complete.

5.1.2 Optimality conditions and maximuom principle

In this sub-section we use the results of the previous sub-section to establish the maximum principle
for the optimal control problem (5.1)-(5.4)-
Tutroduce the function A:R-—>Ras

A(p) =  mex To— max g %+ max T Su}. 5.24
©) Hgllgm=1{g zeK(a)g uEU(.)g } ( )

where it can be shown that A(8) : R — K defiped by (5.24) is a non increasing continuous function.

Hence the optimal value of the performance index (5.4) can be characterized as follows.

Theorem 8. The control u® € U(+) 18 the optimal solution of the problem (5.1)-(5.4 ) if, and only
if, 8% = J (u?) is the smallest root of the equation A(8) =0.

Proof. Necessity. Let u® € U(-) be an optimal control of the problem (5.1) (5.4). Then u?
is the solution of Problem (A} with §0 .= J(u). Therefore, Theorem 7 vields that A(8%) 0.

Suppose now that A%y < 0. Then since A(6) is & continuous and monotone function, there
exists a number 5 such that & < 5% and A() < 0. Hence, Theorem 7 yields that Problem (A) has
a solution where & = 5 since otherwise there would be an available control @ € U(-) and 2 vector
z € M satisfying (5.11)—(5.12) for 6 = 6. Hence, J () <J (u0), which contradicts the optimality of
the control 1° and therefore A(8°) = 0. Finally, the fact that 80 is the smallest root of the equation
A(8) =0 can be proved as above.
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Sufficiency. Let 4% € U{-) be a control function such that &0 is the smallest root of A(d) = 0.
Suppose also that u%(t) is not an optimal solution of the problem (5.1)—(5.4). Then there exists an
available control function @ € U(+) and a vector z € M such that c—z+52=0 and J(@) < J(u°)
holds. This establishes that Problem (A) has a solution for 6 = J (), and hence A(8) <0.

Conversely, since the function A(8) is monotone A(d) = A(J () = 0, which contradicts the
assertion that 49 is the smallest root. Hence v is an optimal control and the proof is complete.

|

Next, let g° = (g0, g?)T c R™ be a maximizing vector for A(8%) and on the interval T = [0,t"]

we introduce the following function A : R — R™

1
At) = Z(g?)Ttﬁ(n,t), 7 <t <1, =0l L (5.25)
i==j+1

Then it is a simple task to verify that the function A(t) satisfies
dA(t
—Eil = ATHAR), Al —0)— A +0) = g?, j=1,...,0—1L (5.26)
and the optimality conditions for (5.1)-(5.4) are given by the following theorem. |

Theorem 9. If the number 59 is the smallest root of the equation A(6) =0, then there exists an
optimal control uj(t), ke K, t € T for the problem (5.1)-(5.4) such that J(u?) = 80 and for almost
allteT

ST ()bt (Wh—sa (£ E) = gg[r}wf(t)bpr_m(v,t), (5.27)

holds for all k € K. Here the function 9 : K X T — R" is given by
¢
() = f ST (DO, i) =MD, FEK, (5.28)
0

where the function A(t) is given by (5.26).

Proof. Since A(6%) =0, Theorem 8 yields that Problem (A) has a solution for § = 6°. This
implies that there exists an available control w? e U(:) and a vector 20 € M satisfying (5.11)-
(5.12). Hence p(20) = J(0) < 50 The assumption J(u®) < 59 leads to a contradiction with the
assumption that 50 is the smallest Toot of the equation A{d) = 0. Therefore, J(u®) = 6%, and,
consequently, u’ is an optimal control for (5.1)-(5.4).

The function ub(¢), k € K, t € T satisfies

(gﬂ)TSu0 = min (¢°)7 Su. (5.29)
uel(+)
and if we assume that (gO)TSuo > Iélgrr(l}(go)TSu, then we have that
AWD) < (@) Te— ()T + () Su =0, (5.30)
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which is impossible since 50 is a root of A(8) = 0. Finally, to establish the desired optimality
condition (5.27) we employ (5.29). Then

Ti

! N-1
uréllijlg)(g")TSu = ulgg%);(g?)T ( ; PIQby (N — 1){(75) + Of ® (75, t)bN(uw(t),t)dt>

uel ()

~ min { / [(g?)%(n,ﬂ . (g?)%(n,t)]bN(uN(t),t)dt+ / {(gg)%(m .
0

T1

+ (9?)T‘1’(ﬂat)le(uN(t);t)dt+ -k f ()T ®(my, t)b (un (8), 1) + -

TL i
-+ /{(g?)T@(ﬁ,t)ﬁ—--»-l—(g?)T‘I'(T;,,t)]D(t)f@(t,s)bNﬂl(uN_l(t),t)dsdt
) 0
o [l etmt) + -+ T D] DE) B(t, sy -1 (un-1(t), dsdt + -
/1 Joe
I t TL
+ (gMT @(n,t)D(t) @(t,s)bN_l(uN,l(t),t)dsdt+---+ (&)@ (1) +-
J / [l

+ (g?)T@(ﬂat)}D(i)PN Qb (1) (B)dt + - T f (@) 2 (n, ) DEYP™ “1Qbu(1)(t)dt}

Ti-1

= min {@b’{(t)bN(UN(t)st) et ¢§(t)bl(u1(t)at)} =3, min F ()b k41 (v:1)-
ke K vell

uel(")

which yields (5.27) and the proof is complete.
B

Remark 4. The analysis just presented gives the optimal control solution in the standard mazi-
mum principle which 13 not necessarily compatible with the numerical computations as required in
applications. Hence we proceed here 1o develop new optimality and sub-optimality conditions which
are more suitable for such purposes. Also we only consider the stationary cs€ S this is the most

relevant in terms of applications.

5.2 Stationary Differential Linear Repetitive Processes

In this Section, the process (5.1) is assumed to be stationary. and the pass constraints (5.3) and
the cost function (5.4) have a gpecial form as detailed below. Also the solutions here are, in effect,
developed by extending the constructive methods approach developed in [29] to 2 repetitive process

setting.
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The processes considered in this section are described in R by the following linear matrix

differential equation

”L;f” — Azy(t) 4 Dogo(8) +bur(t), ke K={L - N}, teT=[0,t"] (5.31)

with boundary conditions

2p(0) = o, kEK, m)=fE), tel, (5.32)

and a pass end, or terminal, constraint of the form
Hoxip(t™) = gk, ke K, (5.33)

Here b € R and gk € R™ are n x 1 and m X 1 specified vectors, A,D,Hy, k € K are constant
matrices of n X 1, B X N and m x n dimensions, respectively. In addition, we assume that the
matrix A has simple eigenvalues Aj, 1 < i < n, and that it is a stable matrix in the sense that

ReX; <0, 1<i<n

Definition 8. For every k € K the piecewise coninuous function up = T — R is termed an

admissible control for pass k if it satisfies
lup@) =1, t€ T. (5.34)

The optimization problem is to find the admissible controls 1 (t), -, un (t) such that the corre-

sponding solution of the syster (5.31)-(5.33) maximizes the following cost function

maxy, J (1), J () = > pra(t?) (5.35)
keK

where pg, k=1,...,n are given n X 1 vectors.

5.2.1 Optimality conditions for supporting control functions.

In the first step, note that the solution of (5.31)-(5.32) (with no terminal conditions of (5.33)) can

be written as follows

k £
re(t) = Y Kt akri— + f Ky (t — T)Df(r)dr +

=1 1]

k
i=1

t
[ Kot6= st k=L N (5.36)
0

where the Ki(t) are the solutions of the following n x n matrix differential equations
K1) = AK1(2), Ki(t) = AK(t) + DK (), i=2-- N (5.37)
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with initial conditions
K(0)=E, K;=0, i=2,...,N. (5.38)

Also it is easily shown that these solutions have the following properties

t
Kj(t_O') = ij_k(t—T)DKk(T—J)dT, 0<o<t<t, Ve=1,..,7- L
a
3
Kift—0) = Y Kilt -TKjrslr—0)  §=2....N-1 (5.39)
s=1
which will be used below.

Now using (5.36)we can rewrite the optimization problem in the following integral form

N Y
max T, J@) = Y [ ety (5.40
j=1 0
subject to the terminal conditions (5.32) and the control constraints (5.34), which can also be

rewritten as

¢+

Jgu(ru(r)dr = ha,
D
t*
f [921 (T)ur(7) + g2 ('r)w("r)] dr = hg,
1’ (5.41)
t*
[ ovi(mua(m) + ...+ gvw(r)un(r) | dr = hy,
L0
and
lug(T)] €1, 7€ [0,8], k=1, ..,N
where
N ok N t*
v o= N P K ey ) / pL K (& — ) DF(r)dr,
k=1 j=1 k=19
N
cj(t} = ZPEKkH-j(t* 7Y, j=1,...,N, gr(7r) = Hi Kot —1b, <k,

k=7

k It
he = 9k~ szKj(t*)akH—j - /HkKk(t* —7)Df{(r)dr k=1,..,N.
Jj=1 [i]

Also we require the following concepts.
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Definition 9. For each fized k, 1 <k < N, the instance 0 < Tkl < Ty < - < Thm < 8 are
termed supporting and their collection 78, = {1y - Tk ) B8 termed as the support of pass k for
the problem (5.31 )-(5.35) if the matriz G’S“u]g = {grr(Tr1)s -+ G (Tkm )} 95 non-singular.

Note also that from (5.37) we have that grk(r) = H keA(t*'T)b. Therefore the existence of the

support TX,,, is guaranteed by the controllability of the pair {4, b}.

Definition 10. A pair {Tfup, up(t)h k=1, N } consisting of a support 'r;“up and admissible control

functions up(t),t €T is termed s o supporting control function for (5.31 )-(5.35).

Remark 5. These last two definitions ore motivated as follows.
Often an optimal control problem solution has the so-called bang-bang form, i.e. the control
function takes only boundary values in the admissible set U. If U={-1<us +1} then w0(t) = £1

(the ‘switch on/switch off’ regime). Also the switching times are constructive elements in the design

of the optimal controller. Hence, our goal is to apply these key clements directly to the optimality

conditions and hence we US€ the supporting time instances and control.

Let {Tfup, ug(t), k=1, N } be a support control function and construct a sequence of m X 1

vectors {v(k), k=1,...,N} by solving following set of linear algebraic equations

r

N
WMTGN,, - ) -0,

— - N—
WN-DYT G - YT F (G tyoup o =0,

j (5.42)

L(V(l))Tgiup + (V(2))TF123up + ot (V(N))TF]{gup - C(S:BP =0

where the vectors cgu)p and matrices F. pr are given by

Cyf},; = (Ck("l‘kl),...,Ck(Tkm))T, k=1,. ':Na

il

F_',{csup £ (gkj(le):---:gkj(ij)>v k>j: 3:11 1N 1.
Now define the so-called co-control function as
AD) = (Ar(t),- - An(E)T =V G <)y

where & = (9, ..+, yINT - eft) = (cr(t), .- s en(t)F, and G(t) is an mN x mN matrix function
of triangular form, whose TOWS are the m x 1 vector functions gi; () of (5.41)- Also introduce the

nonsingular mN X mN matrix

G, 0 - 0
G = Gkj (t), te T.fup —. Ggup Ggup 1 0 (5.43)
e i<k, k=1..N
N N N
Gsup Gsu’p : Gsu’p
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Hence the mN x 1 vector v = (), T required in (5.42) can be given by v = cfup@;}p.

Definition 11. We say that the support control function {7k 5 uk (t),k=1,...,N}is non-degenerate
for the problem (5.81)-(5.35) if

dAR(T;)
—?f—¢0Vﬁeﬂ%,k:L”qN

Remark 6. Here non-degeneroncy means that in o small neighborhood of the supporting points
the admissible control can be replaced by constant Junctions whose values are less than those on
the control constraint boundary and which satisfy (5-41), e the support control function is non-
singular if there erists numbers Ao > 0, po = 0, u’;()\), j=1,..,m, kE=1,...,N such that
the following equalities

k™ Tij +X Tig +A

k m
Zzuz()\) / gkj(i)dt=zz / gi; (t)us(t)dt,

g=1i=1 Tig—A i=1 1'=1‘J'5.j Y

|ufl < 1 — po, j=L”ﬂm,k:L”qN (5.44)
hold for all A, 0< A< andk, 1SEZS N. Also (5.44) will be used below in the proof of the
optimality conditions.

Associate with each supporting time instance Ti; a small sub-interval Ti; from T' such that the

matrix G’;en = { f gre(T)dT, §=1:--- ,m} is non-singular, and, without loss of generality we can
Tk:j
further assume that 7g; is one of the ends of Tk; and the supporting control function ug(t) = u";

fort € Txjy, J= i,..., N are constant over the segments Ti;-

Now we have the following result.
Theorem 10. A supporting control function {Tfup, u(t), k=1, .,N} isan optimal solution
of the problem (5.91)-(5.35) if
wl(t) = sign(Ak(t)), k=1,....N. (5.45)
Moreover, if this supporting control function is non-degenerate then the above condition is NECESSATY
and sufficient.

Proof. Sufficiency. Let tk t) # ul(t), k= 1,...,N bean admissible control and z(t) be
the corresponding trajectory of the system (5.31)—(5.32). Since from (5.41) it follows that

GO — ult) =0

for the admissible control functions w01 = {uf(D)s-- ud,(t)} and u(t) = {ur(t), ..., un(t)} then
(5.40) and the definition of the co-control function A(t) yilds that the increment, AJ{u) == J (u®)—

J(u), of the cost function can be expressed in the form

j=17

tt N N t*
AJ(u) = ]Z ci(t) {ug (t) — uj (t)] dt = — Z j A(t) [u? (t) — uy (t)] dt.
o 7=
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Hence, (5.45) yields that AJ(u) = 0 for any admissible control u, i.e. {7k, up} is an optimal
(maximizing) supporting control function.

Necessity. Let {Tg"w, ul(t), k=1,...,N } be an optimal non-degenerate control but 3 k., 1 <
k, <Nand3t. €T, such that the theorem is not valid. If we suppose that ty € [Th.j — X, Thaj + Al
where A > 0 is a small number, i.e. the instance t, lies in the neighborhood of some supporting time
instance Tg,j, then using the fact that the supporting control is non-degenerate yields that there
exists a control variation Au?c* {t), defined on the intervals [Tk, — A Thed T A], such that J (u®) > 0,
which contradicts the optimality of ul(t). Therefore, we suppose that ty & [Thai— A Thag +X Vi=
1, ...,m for some gmall X > 0.

Next, without loss of generality, assume that A (t.) > 0 and g, (t«) > 0. Then by continuity
of A, (t) and piecewise-continuity of ug, (t) there exists an neighborhood Tk, (¢«) of tu, such that
Ak (t) > 0, ug(t) > _1 for t € Tk.(ts). Now, we have to construct the admissible control
variation such that the corresponding increment of the cost function satisfies AJ () > 0, which is
impossible for the optimal controls ud(t).

Consider now the case of a small real number Ao > 0 (we see below that the existence of such
a number Ap is guaranteed by the fact that the supporting control is non-degenerate) and for all
A, 0 < A< Xg defines the control variation Au(t) = (Aui(t); - Aupn(t)), t€T as

Aug(t) = 0, k<ko teT;

9(_1 — Uk, (t))w 6> 0: te Tk* (t);
Auk*(t) =

m
0, tET\(U[Tk*j#)\,Tk*j-l-)\]UTk”(t)).
=1
Hence the control variations on the intervals [Tk, j — A Thaj — A, j=1,...,mcan be chosen as

constant functions Aug,(t) = A’t??()\). The control variations for the remaining passes k > k. are

defined as

Aug(t) =0, k=k.+1, ., N, te T\ Ul — X + A
J=1

Aug(t) = AR, t € [rej — A Ths LN, j=1m kE>k

where A’l?? (X\) are unknown constants which are determined below.
Using (5.41), it follows that the conditions

b5l k&
f 3 guo(r)Aus(rldr =0, k=10, (5.46)
) 5=1
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hold for any admissible variation Awu(t) and can be re-written in the form

Trwg +A
™
OEDY ] Gruk (T)O (N7 = —0 f oo (=1 — uge, (7)),
e WS T, (t+)
m ﬂc,..+1j+A
uss) 2 [ orsmentoy v =
Tk*+1J A
- Tk*j+)‘
—Z f Qk,+1k*(f)79?”()\)d’r'9 _[ Gt 1ha (T) (=1 — g, (7)) T,
j 1,,.,“‘3__) Tk*(t*) (547)
TNG+A - Thej+ A
n(A) = Z f avn ()Y (Ndr = = ) f gne. ()05 (NdT—
TNJ A j=1Tk*j‘—A
‘J'N_lj—t-.x
0 [ a1 = [ onwame v
T (t+) 3=l THN—1j A

Expanding the function ¢k, (A) of (5.47) in a Taylor series truncated at the second order and
setting AR = A (A), ..., A0F(A) leads to

d?
Q,AG’;T'ZPA%?’;* _,_{ gk*k* Tk*J) 1 L. ’m}Aﬁﬁ* + Ok, (AS) =

-0 f Gk (7) (1 = (7))
T, ()
where ok, (A%} denotes terms of 3 degrees and above which are neglected here. Hence the required

vector Aﬁ’;’“ can be represented as

Aghe = ;9% L00.(\), where g, = _%G%;g; fT ( gk, () (=1 — g, ()7, (5.48)
P

and O, (A) denotes a residual first order term. Using (5 44) and (5.48), then for a small value of
X, 0 < A< A, there exists a real number § = 8()), such that 8(X) = pi A < 1, where pe, > 0

does not depend on A, and the following inequalities
Juf* (V) +AE (N <1, G=1,..m

hold. Here we have exploited the fact that the admissible controls are constants u; (A} over the
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intervals T}“, containing the supporting points 74;. Hence, the function

wb () + AP (), € Iy~ M Thoi |
a, (t) =
g, (£) 4 OON(—1 — g, (), t € Th ()

is an admissible control function for 8(A) = pg, A <1 and a small pg, .
Tn order fo find A’t?’;"‘+1 and 6()), expand ¢g,+1(A) as a Taylor series to yield

m Tk*_:,-f)\

S / g 116 (PVADE ()dr = 20 g s, ()05 (N) = 22CE AT
=Lyt

o 1 . = . o
= 2GEH (;mc* i, + ks Aok*(f\)) = 2G5 g X, + e (V) (5:49)

Here the matrix é’g*H is constructed from the rows {gk*+1k, &), i=1,.. .,m}, where §; are

points from the intervals [7.; — A Thoj + Al
Next, set Ad%7! = (Aﬂk*ﬂ (A), ..., AdkEF(X)) to write

d?
ZAGEL;IAﬂk'+1 3 { gk*""l;ﬂ’r_e'l(‘]—kk‘?) = 1., m}Aﬂi"H + 041 (/\3) —

—uk*a\{@’;’*“ﬂm f gk*ﬂk*ﬂ(f)(—l~uk,‘(r>)dfr}+uk*ék*(f\3). (5.50)
Ty (1)

which means that the required vector Aﬁ§*+1 can be expressed as

1 .
AT = 3 s A1 prie, AOkr41(X),
) 1 N
g1 = —§(G§1’1;1) {G’“*J’luk* f Gt ka1 (T)(—1 - Uk, (T))d‘f} (5.51)
Ti, (t+)
Now choose At‘}ﬁ*ﬂ such that the following inequalities hold
L)+ AT ) <1, G= 1

and Ao can be decreased as required. Continuing this expansion
e desired admissible control function

and hence the values of py,
procedure for the remaining equations in (5.47), we obtain th

in the form

a(t) = ul(t) + Ault) = {ul( ) F Auy(B), - .., ud(t) +AuN(t)}, teT

and note here that Aug(t) =0 Vi< k..
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Now calculate the increment of the cost function generated by the designed control function

u(t) as
N &
AJw) = J@-— J(u®) = fAk(t)Auk(t)dt = Z f Ag(t)Aug(t)dt =
k—l 0 k=kg 0
y Tewi T
¢ f A, () — 1 — vk, (1))t — > A () ul () + A (N) - ul* ()] dt
T (t*) jzl"’k”‘ —A
m Tsj +/\
Z Z j Ay(®)[ul(A) + ATV — U5 (t)] dt (5.52)
s=ke+1 4= Ts_f,'
Since Ax(Tij} =0, k= ku, --oa Ny F=1,000,7, then again from the Taylor series expansion in A,

we have the followmg estimate for the 1ntegra1 components

Taj+A
] As(t) [uz(A) + ABI(N) — wi(t)]dt = / A{t) [u(A) + ABS(N) - 5 (t)]dt
‘1'3_;.'-—)\ Tsj
LA (e [N + AT — U (1)) + (5.53)
A TS R : -~
2_id(rﬁ[ SN) + AN - ul(ryg)] + 01 (X%) 2 o(V).
Hence, (5.52) and (5.53) yield
AJ(u) =~ A f Ap (0)( ~ 1~ . (8))di 4 0(X) > 0 (5.54)
T (ta)
for a small A > 0, which contradicts the optimality of control functions W(t), k=1,..,N.
m

The optimality conditions for the supporting control functions can also be expressed in maxi-

dpn(t) _

mum principle form. Let () be the solution of the following differential equations

7 ~ATyn(t), Un({E") =Py HIN, teTl (5.55)
which can be represented as
wn(t) = KT (¢ — ty(t), teT (5.56)
Hence, the following equalities
JTwp = (o @M HY) K — b = Pt =6
(MNTHN K - )b = en(t) ~ (M gnn(t) = —Bx(t) (5.57)

69




hold. In order to verify the validity of the corresponding conditions for subsequent passes we apply

(5.39) for the differential equations (5.37). Let vn_1(t), t €T be a solution of the differential

equation

diin_1(t
"——_‘T’Dthi( ) - —ATn () - DTyn(t), ¥n-a(t)=pN-1— gL Nt teT (5.58)
Then

Pp (1) = (wh_y — @V YT Hya) Kt — )b —
i
ok — (YT Hy) f KT (4 — DKL (¢ — m)bdr |
tw

— phKi(t"—t)b— (N)T Hy—1 K (£ - )b — % — (T HN)K2(t" — )b
~ enoa(t) — @ g8 - (M) T gnn-1(t) = —An-1(t} (5.59)
By analogy with the case considered above, we have
T = -Dk(t), k=2, ., N, (5.60)

where ¥(t), t&€T are the solutions of the following differential equations

dy(t
—“”’d’“f—) AT - DTaD), et =pe - HES T (5.61)
Foreachk=1,....N introduce the associated Hamilton function as

Hk(mk—la Tk, Wk uk) = ’t‘l‘)’{ (A:Ek + Dzxj—1 + buk) , tE T, (5.62)

Then use (5.60) to yield the optimality conditions (5.45) can be re-formulated in the maximum

principle form as follows

Corollary 1. The admissible supporting control {frfup, u(t), k=1,.--; N} is optimal if along the
corresponding trajectories x(t), wk(t) of (5.81)-(5.82) and (5.61) the Hamiltonian function takes |

the mazimum value, . €.

Hk(m%_l(t),a:%(t), v,bk,u%(t)) = max Hk(:v?c_l(t),z?c(t),a,bk, v), teT (5.63)

vl
fork =1, ..,N. If the admissible supporting control is non-degnerate then this condition is neces-

sary and sufficient.

In the next section, the maximum principle for arbitrary admissible control functions of the

form of (5.31)—(5.35) is established using the sub-optimality conditions. |
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5.2.2 ¢ optimality conditions.

Usually, in the design of numerical implementation of optimal control algorithms we exploit ap-
proximate solutions with corresponding error estimation. Hence it is necessary to introduce the
‘gub-optimality’ concept, as it is often sufficient to stop the numerical computations when a satis-
factory accuracy tevel has been achieved.

Assume that {u§(t), k€ K } is the optimal control for (5.31)—(5.35), and let J(u®) denote the

corresponding optimal cost function value.

Definition 12. We say that the admissible control function {ug(t), kK € K} is e optimal, if the
corresponding solution {z5(t), teT, k€ K} of (5.31)-(5. 83) satisfies J) - J) e

Now we proceed to caleulate an estimate of & supporting control function {ul, T;“up, ke
kt e T}, ie a measure of non-optimality of the control. Note also that this estimate can be
partitioned into two principal parts: one of which evaluates the degree of non-optimality of the
chosen admissible control functions ug(t), and the second the error produced by non-optimality
of the support 'rfup. This partition is a major advantage in the design of numerically applicable
solution algorithms.

Introduce an estimate of optimality 8 = B(Tsup, u) a8 the value of the maximum increment for
the cost function of (5.31)~(5-35) calcutated in the absence of the the principal constraints {5.33),

this estimate is given by the solution of the following relaxed optimization problem

AJ(u) — Tax, lw(E) + Aug(t)| €1, te€T, E=1,....,N (5.64)
1t is easy to see that
N b N N
B = Blrmp ) = 3 f A Au(Bdt =S f Ap(6)(un®) + D+ Y f A (ug(e) — D,
k=17 k::lT;: k=1Tk,-

(5.65)

where
TS ={teT: Aty >0}, Ty ={teT: Ag(t) > 0}

and we have the following result.

Theorem 11. (e-mazrimum principle) Given any € > 0, the admissible control {uk @), teT, ke
K} is e-optimal for (5.31)-(5.35 ) if, and only if, 3 the support {tk ke K } such that along
the solutions Tk(t), Pr(t):t € T, ke K of (5.91)-(5.93) and (5.61) the Hamiltonian attains its €

magimum value, 1.€.
Hy(ed_, (8), 72 (8), i, up(t)) = = Hy (a2 (), 23 (), e, v) — €l 2 € T, (5.66)

where the functions ex(t), kK satisfy the following inequality
> / ex(t)dt < e (5.67)

keK 7
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Proof. Sufficiency. Assume that (5.66)—(5.67) holds for an admissible control {uk(t): t €
T, k€ K}. Then by (5.60) the suboptimality estimate can be calculated as

8 = (Tsupvu) Z/d)k (t)b —Uk(t)—]. dt—szw (t)b(lﬁuk(t))dt

kr-lTk

N
= Z / W () (Azy(t) + Dzp-1(t) - b)dt — > f T (&) (Azg(t) + Dor— 1(8) -+ bug(t)) dt

=l =t
N
- / (O (Aze(t) + Dap-a(t) + 1) dt—z j ST () (Azk(t) + Daa(6) — bur(D)dt
S o

=

/[maxﬂk 1 (), Tk (1), (L), v) "Hk(mkfl(t)ufﬂk(t)u'Sbk(t)auk(t))]dt
T

=

=1

I
M=

fek(t)dt < €.
T

Since the sub-optimal estimate (5.64) has been calculated in the absence of constraints (5.33), then

o
Il

1

it is obvious that the following inequalities hold
J( 0) - J(u) = ﬁ(Tsupau) <E

This proves the e optimality property of the admissible control {uk (t), t€T, ke K }
Necessity. Let {uk(t), teT, ke K } be an e-optimal admissible control and let { oups £ € K }
be an arbitrary support. Then the sub-optimal estimate of the control corresponding to the chosen

support can be calculated as

N N
B(Toups ) = Z / Ap(tup(tdt + > [ ArB)dt = f Ap(t)dt. (5.68)
k=1 b=l k:lTk_
Now introduce the following dual optimization problem
Iy, v, w) = Z [h Yk + /vk(t)dt—l- fwk(t)dt} —- min (5.69)
keK T T yt
subject to

N

nygsk(t) — u(8) + wi(t) = exlt), uk(t) 2 0, wi(t) 20, t €T} ke K. (5.70)

s=k

It also can be shown that (5.69) —(5.70) has an optlma.l solution if there exists an optimal control

for (5.31)—(5.35). The chosen support is denoted by {7k, k€ K} and then use (5.42) to construct
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B 4_1

ye = vi; velt) = Apt), we(t) =0 if Ax(y > 05

the vectors zx = {¥x, vk, Wk, k € K} as

() = 0, wi(t) = —A(t) if  Dx(t} <0 (5.71)

where, by the definition of Ag(t), these satisfy the constraint (5.70) of the dual problem.
Let {yk,vk(t),wk(t),t e T,k € K} denote an optimal solution of (5.69)~(5.70). Then (5.69)
and (5.45) yield

B(Tsupr i) = ZZf gsk(t)uk(t)dt—chk (t)uk(t)

k= ISHkT

+ Z/’uk(t)dt——ijk

k=1mg k=1x

- [i ’c)TZ f s (Eus(t) dt+zN: j g ( t)dt—z f wk(t)dt]

[ZZ f (y3)" gai( t)uk(t)dt-l—z f vk(t)dtei 1[ wg(t)dt]

k=1 s=k k=1

Z/ck(t)uk(t)dt—zfck(t)uk

k=14 k=17

[i k)Thk+2f(Uk (t) — 'U'Jk:(t))dt:\ [i Thm-gf (v(t) — )dt]

k=1 k=1 k=

-+ / cx(t) uk dt—chk(t up(t

1T k=17

Finally, the sub-optimal estimate can be written in the form
ﬁ = ﬁ(Tsupa 'U') = ﬁsup + ﬁug (5.72)

where

Boup — zhk(uk— 43 / [fuk () o(0)) — (wn(t) — vl ))] d (5.73)

k=1

denotes the non-optimality measure of the chosen support {T¥ Tonpy K € K}, and

Z/ck(t) ug(£) — ui(t))dt (5.74)
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denotes the non-optimality measure of ihe given control function {ur(t), t €T, k€ K}

Now choose the support T__?up = {Toupr K € K} such that the corresponding collection zg =
{yg,vg,wg, k € K} of dual variables is an optimal solution of (5.69)—(5.70). First, we show that
the chosen SUppOrt To, = {7k (e), ke K } is the one required for the given ¢ optimal control

functions {ug(t), k € K}. In particular, since Gsup = 0 then B = Bu,78,,) = Bu < ¢. Next set
at) = A +1), teT,
Ek(t) = Ak(t)(uk,(t) — ].), t e Tk_

ex(t) = 0 if Ap(t)=0,t€ 1.
and note from the definition of Ag(t) that we have

a(t) = —vfEb(ur() +1) = BT (£)(Azg(t) + Drp—1(t) + (= 1)}

— YT (Azp(t) + Dopa (1) +bus(t)) i Yr(t)b < 0;

Ek(t) = T,Dg:(t)(A:L‘k(t) + D.I‘k_l(t) + b(—|—1))

WT (6 (Azi(t) + Dz (t) + bux(?)) if ()b > 0;
e(t) = 0O if Yp()b=0, teT, ke K.
The use of the Hamiltonian (5.62) now enables the last expressions to be written in the form
ex(t) = lrilir%:lc Hy(zh_1 (), 2Q(t), Yk, v) — He (21 (2), 20(1), vk, uh(t)), teT, ke K.
Adding these last expressions and noting that {ug(t)} is an suboptimal control, yields

N N
Zfek(t)dt = Z[Ak(t)(uk(t)+l)dt

k=1np k=1T:'

N
+ Z f Ag(t)(ug(t) — 1)}dt = Blu, 7o) = Bu S €
k=17
i
which completes the proof.

Note now that that maximum principle follows from the theorem above on setting € = 0.

Corollary 2. The admissible control {uQ(t),k€ K, t € T} is optimal if, and only if, there exists
a support {t0%, k € K} such that the supporting control (@), 7k, teT, ke K} satisfies the

mazimum conditions

max Hk(:cg_l (1), (L), ¥k, v) = Hy (m?cﬁl(t), x2(t), Yr, un(t))

|vj<1
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for all k € K, t € T, where Wi(t) are the corresponding solutions of (5.61).

5.2.3 Differential properties of optimal solutions

An important aspect of optimization theory is sensitivity analysis of optimal control problems. In
practice, control problems are often subject to disturbances or perturbations of the system data.
In mathematical terms, perturbations can be described by some parameters in the initial data,
boundary conditions, control and state constraints. It is clearly important to know how & problem
solution depends on these parameters. The aim in this sub-section is determine the changes in
the solutions developed here due to small’ perturbations in the parameters, which should enable
us to design a fast and reliable real-time algorithm for correcting the solutions for these effects.
The major advantage of the proposed constructive approach is that the sensitivity analysis and

some differential properties of the optimal controls under disturbances can be studied, which is

very critical if they are to be applied to control synthesis problems.

Suppose that disturbances influence the initial data for (5.31)—(5.33). In particular, consider
the system (5.31)~(5.33) on the interval T = [s, £*] with the initial data 1k(8) = 2k, 2k € Gry K € K
where G, C R™ is in some neighborhood of the point T = and s belongs to the neighborhood
G of the instant t = 0. In addition, we assume that the following regularity condition holds: for
the given disturbance domain Gi, k € K U {0}, the structure of the optimal control functions for
the non-disturbed data is preserved, i. e. the pumber of switching instances together with their
order are constant.

Using Theorem 10, the optimal controls {ud(t,s,2),k € K } are determined by the supporting
time instances Tr; = Thi(8,2), K € K, j=1....,m which are dependent on the disturbances
(s,2k),8 € Go, 2k € G, k € K. The aim of this section is to study the differential properties
of the functions Tx; = i (9,2), k € K, j=1,...,m. Yor ease of notation we set T = 7(8,2) =
{Tkj(s,z), keK, j= 1,...,m},z ={z, ke K}in what follows.

Theorem 12. If (5.31)-(5.33) is reqular then for any k € K and j = 1,..,m the functions
Thj = Thj (s,2z) are differentiable in the domain Gg x Gx C R x R™

Proof. Using (5.40)-(5.41) and Theorem 10 it follows immediately that the switching instances
Thj = Ti{s,2), k€K, I = 1,...,m of the optimal bang-bang control {u(t,s,2), k€ K} for the
disturbed problem (5.31)~(5.33) are the solutions of the following optimization problem

m+l Thi
max Z sign Ri(s,z) Z(—l)j f cr (t)dt (5.75)
7 ek =1 ki1
subject to
m+1 i
Zsign Ry(s, z) Z(‘—l)j / gk;(t)dt = hk(s,z), ke K (5.76)
1K =1 i1
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Here sign Ry(s,z) = %1 denotes the value (u = +1 or v = 1) of the optimal control on pass k

over the first control interval t € [8,7x1], and

k t
hi(s,z) = gk — ZHkKj(t*)zk+1——j - /HkKk(t* — t)Df(t)dt. (5.77)
i=1 s

It is obvious that the switching instances Tkj = 5 (8, 2) satisty the following inequalities
o < Tl < Tha < 0 < Thm < Tometly  Tho = S Thmid =1,

Since {ul, 79,k € K 1 is the optimal supporting control for the non-disturbed problem (5.31)-
(5.33) then the optimization problem (5.75)—(5.76) has the optimal solution 'r,gj,k € K=
1,...,m}at s = 0,zx = ok, k € ki =1...,7m Hence there exists Lagrange mulsipliers )\2 € ‘

®™ k € K which are not simultaneously equal to zero and such that the collection {)\%,’rgj} ig

a stationary point for the following Lagrange function associated with the optimization problem ‘

(5.75)—(5.76)

m+1 ki
L{A, Tsup) = Z sign Ry(s, z) Z (*1)3' f cx(t)dt
kEK j=1 Tkj—l
m+1 ) g
+ > M [Z sign Ri(s,2) 3 (=1Y f gu(t)dt — ha(s, z)] (5.78)
keK IeK Jj=1 rii—1

The well known stationary conditions for the Lagrange function L lead to the following equalities

N
2 sign Rk(s, z) [ck(mj) + Z)\ggm(mj)] =0, j= 1,...,m, LeK (5.79)

=k
k m+1 . i
S sign Rils,2) 3 (-1 f (it — h(s,) = 0, REK (5.80)
=1 i=1 Tij—1

with respect to the unknown Ay and mi(s,2) k€ K, j=1..,m The Jacobian matrix D of the
mapping (5.79) with respect to variables (A Tsup) caleulated at s = 0 and zp = & can be written

in the form

G F

p=1[2 signRBi(0, &) ( e ) (5.81)

keK 0 Gouw

where the matrix G sup is defined as follows
. (t terTk
Goup = 915 (1) e (5.82)
j=k k=1....N
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and the matrix F' is formed from the derivatives of the functions cx(t), gri(t) taken at the corre-
sponding points. By the definition of the supporting time instances we have that det D # 0 and by
the implicit function theorem there exists a neighborhood of the point (0, g, k € K) where (5.79)
has a unique solution A = As, 2}, T = Tri(S z) where these functions are also differentiable.
This completes the proof.
|
The above differential properties of the optimal controls can be used for sensitivity analysis and
the solution of the synthesis problem for the repetitive processes considered here. In particular,
the supporting control approach can be applied [30] to produce the differential equations for the
switching time functions 7(s, 2) necessary t0 design the optimal controllers. By analogy with 126]

it follows that they satisfy the following differential equations
oh or 0Oh

ds’ PBz Oz

where h(s,2) = (hi(s,2),-- ., hm(t, 8)) 1s an mAV X 1-vector
given by (79) and the matrices G, Q, P are defined (see [26]) by those defining the process

or
G(Tig +Q= (5.83)

dynamics and information associated with the non-disturbed optimal solution. For example

N T
G=- (Qll(S)SignAl(Tll): go1(8)signidi () + g2a(s)signii (1), - - ,EQNj(S)SigﬂAj(Tjﬂ)
j=1
where the functions Aj(t), 7 =1 N are designed with the help of the switching moments of the
basic optimal control function. Note, that the analogous differential equations can be established

for the optimal values of the cost function, treated as the function J(s,2) = J(u(r(s, z)).

Remark 7. The equations (5.83) are (sometfimes) termed Pfaff differential equations and model
an essentially distinct class of continuous n — D systems. The main characteristic feature of this
model is that it is overdetermined (in the sense that the number of equations erceeds the unknown
functions). It can also be shown that the non-degenerate assumption o the suppoTting control
functions leads to the validity of the so-called Frobenious conditions that quarantee the existence

and uniqueness of a solution of Pfaff differential equations.

5.2.4 Examples

In order to demonstrate the advantages of the supporting control function approach, we now give
the following examples.

Example 1. Consider the case of N = 1, where the superscript (+) is used to denote a particular
element in the state vector on the pass, and the following optimal control problem

ﬁ%’i J(u) = (1) (5.84)
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for

dx®
200 e O, D@ eR telsl, (5.85)

dt

dz)(t)

= = ut), W)=z, 3D ==

subject to the following constraints on control variables and a terminal state constraint
) <1, =M1 =1/8, (5.86)

respectively.
In this case it is easy to verify that for s — 0 and =M (0) = 0, £ (0) = 0 the optimal control

sigmal is given by
WOty =-1 for 0<t<1- 5/8; and u’(t)=-+1 for 1- /5/8 <t <1

Synthesis of the optimal control can be realized using the switching instance function T = (21, 22, 8}

which has to satisfy the following differential equations

or _ 1

9z, 2(-—-7)

ar 1—3

5 = =7 (5.87)
97; B 1—5— 2

ds  2(1-17)

with initial condition
7(0,0,0)=1— 5/8,

which is a particular case of (5.83).
The solution of this Pffaf differential system is given by

m(z1,22,8) =1—V53/8+ (s—Dzm—zn—st 52/2
Without loss of generality, assume s = 0 and then the optimal switching function is

7(71,22,0) =1 — \/5/8— 21 — 22

Figures 1 and 2 illustrate the form of this solution. Figure 1 shows the state space variables
together with additional variable ¢. The optimal trajectories (5.84)—(5.86) corresponding to the
bang-bang control law lie on the parabolic cylinders (Z1) : M) = —%(:t:@))2 +Cy + Cp and (Z2)
1 = +%(m(2})2 + & -+ Oy where the constants C;, G, i = 1,2 are determined by the initial data
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Figure 5.1: Optimal synthesis control

Figure 5.2 Projection on the (drixy plane

£0(0) = z1, #&(0) = = These cylinders correspond to the solutions af the differential equations
(5.85) withu=—loru= +1, espectively. It can also be shown that the admissible initial domain
for which the prablem can be solved is determined by the inequalities: —% <2+ <32 The
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switching manifold Zj is described in parametric form by

( 1—/5/8—22—2 ?
o0 — il ) | (1— /BB 22— 21) + 4

$(2)_—_'-—-]_+ 5/8——22—2]_—"22,

TT:l—\/5/8—22—251,

L—%§z1+z2§-§

Finally, each optimal trajectory consists of two parts — first it evolves along the vertical parabolic
cylinder 21 until 7 = 1 — \/m when it meets the switching manifold Zp, and then
immediately is switched to continue along the second vertical eylinder Zg to meet the target plane
(1) =1/8. Figure 1 shows the optimal trajectory in the space R? for zero initial data, and Figure
9 shows the projection of this trajectory onto the ),z plane.

Example 2. Consider the following optimization problem for N = 2, where again the super-

script (-) is used to denote a particular element in the state or control vector on amny pass:

max J(w) = 22 (1) + 2 (1) (5.88)

U U2

for the process

(n (1)
doi’(t) _ (@ dzs’(1) @
dt =I (t): dt - 932 (t)s te [51 11

(5.89)
dﬁ%@ =ua(t), 5—2—@ = a{!(1) +ua(t),
with boundary conditions of the form
05y = 20, 2P(s) = o, a9 = 247, 2 (0) = A (5.90)
subject to
V) =1/8, «$(1) =1/384 @i =1, lua(8)} < 1, (5.91)

The dynamic here can be written as a stationary differential lincar repetitive process of the form

£l (1) (m
g () | 01 ;14 (t) 00 0] o], _
{ () ] - { 0 Ol { xsc?l(t)} * [ 1 0} [ 22(0) } { . } pea(t), k=01 (5.92)

Without loss of generality we set Zo (t) =0, tels1].
To apply the results developed here to this example we first rewrite (5.89)—~(5.91) in the following

integral form:
1

1
1— 2 1— 2
max {zg) + 2@ ra-a)d+ (_2_5)—ng> o+ / E——g—igul(t)dt-i— f u,g(t)dt} (5.93)

Ul,12
5
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subject to

1
](1 — Hui(t)dt = E - z&l) (1 s)z?),

1
a-t? 1 1-s)? (1—9) (2
/ [Tul(t) + (1 - i)u:z(t) dt = ﬁ Zél) - (1 - 3)2&2) - (——2'—)—251) = —.—6_._2§ )

8

(5.94)
Hence
1-1)?
gty = 1-% gmﬁ)=£—€lu goa(t) =11, (5.95)
1—t)2+2
a = ST el =1 (5.96)
and the multipliers required to design the co-control function Ai(#), = 1,2 can, noting (5.42), be
written as
V(2)922(T2sup) - 62(7-2511,]9) =0,
(5.97)
V(l)gll (Tlsup) + Vu)gm (Tlsup) - (‘Tlaup) =0
Then
1 — Tisup (1 - TlSupFl (1 - t)s (1 - t)z
A () =(1—-t¢ + O -mew)) A
1) = ) [1 — Tisup 2 6(1 — Tosup) 6(1 — Tosup) 2
(5.98)
1--t¢
Aty =—— — 1
1 — T2sup

Now the problem is how to find the basic optimal trajectory when all variables in (5.90) are zero,

ie.
S“O:#Hm=0ﬁ&Km=0ﬁ£%m—0:@Rm—0 (5.99)

and take the supporting instances as

5 131
Tlsup = 1- \/‘;7 T2sup — 1-- 956 (5‘100)

Then it follows immediately from Theorem 10 that the optimal control functions for (5.88)—(5.91)
with the initial data (5.99) are given by

-1 0§f<1*v6, 1 0<t<l /5%
ud(t) = 80 = 756 (5.101)
+1, 1-4/3<t=l 11, 14/ <t<]

and the differential equations (5.83) give the switching [unctions

i( (1 (1) (1) S)

L= Tl ,z1 ,S) o =To{2] 222 1 E
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as

6’7‘2
2 s (1=
31'2
_ (1—7)-
8z 3 8z 2
B 812 (1_ )_(1*7'1)3 B‘Tl _ (1*5)3
Bz]@ 3 Bzgz) 6
d1o 1o
]__7-2)_—_-#]_, -2 (1_7):_‘(1;3)1
Bz(l}( Bzéz) ?

with initial conditions
131

5
7'1(0,0,0) =1- J_-Sj, TQ(D,0,0,0,0) =1- 1—65

The solutions of this differential systern are

(0,25 =1~ SR(D, 27, 5)

DD, 20, D, A5 =1 SRa(?, 250, A0, 7579)

where
SR1(z§1),z1 ,8) =3 + (s — 1)z

131 9 — 8 5952 — 102
S, 0,9, 9, = L BB

45 — 125> + 115 -3 (@) |
48 !

szgl) z&z) B zgl) z&Q)
6 6

_90s2 +40s—19 @) 1 )2
e AR

It easy to see that the solution of the different

up = const, vz = const are

2 (8) —ulE +1C + O,
23 (t) =ut + O
3

(1) ¢t t t2 £
Ty (t) zulﬂ + ClE + 025 + UZE +tC5 + Ca,

e t*
22 (8) =urg + Cigy +1Ca + w2 +Cs

82

zgl) —s5+5°/2,

2
—52+2s—1 (22
12 Z£)+

- z§2) 4 (s — 1):452)

jal equations describing the process dynamics W

(5.102)

(5.103)

(5.104)

(5.105)

(5.106)
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and in this case that the optimal control for pass k = 1 coincides with that of Example 1.

Now consider disturbances @ such that the optimal control is preserved for the case of zero

:nitial conditions, i.e. uy = —1for ¢t < (2, A ) (@d=-1, for t < (Y, AP, 29, A2 5
and the inequality 71 (zgl), z&z), 8) < TQ(Z](.]L), zél), zgz), zéz), s) holds. Using (5.104) we have that the

domain € is described by

0< T1(Z§1),z§2), 5) < 'rg(zgl), z?) zgl), 252)1 s) <1

7

SRl(z§1}:Z§2), s) = 0, SRz(zgl), zél),z?},zéz), 5)=0

To construct the solution for pass k == 2, it is necessary toO construct the switching surface §

which is defined by the vectors
2O) = 7 (o, 57, 247, 287,50 7))
2D 1) lomry= 82 (e, 27 217, 287 9))

when the parameters zgl), zg) , z:(LZ), zéz), s are members of the set (1. The parametric description of

the switching surface § is given by

t 3 2 2
Lk L2l Yol
4+016+02 2+ s+ Ca,
(5.107)

3 12
-’E(22}(t) =% +Cl—2— +tC—t+Cs

where the coefficients C; ave found from the parameters z%l), zgl), z&z), zgm , 8.

5.3 Conclusions

In this thesis the supporting control functions setting is applied to study the optimization problems
for continuous-discrete linear repetitive processes. The main goal achieved here is to develop the
constructive necessary and sufficient optimality conditions in a form, which can be effectively
used for the design of pumerical algorithms. The iterative method proposed here is based on
the principle of a decrease of the suboptimality estimate, i. €. the iteration {755, Uk ), k=
1,...,N} — {'?;“up, ag(t), k= 1,..,N}is performed in such a way to archive B{Foup, B} <
B(Tsup,w)- It turns out that this procedure can be separated into two stages: 1) transformation of
the admissible control functions fup(t), k=1 ..N}— {ip(t), k=1 N} which decreases
the non-optimality measure of the admissible controls Bla) < B(u); 2) variation of the support
{rkp k=1 LN} o {FEp, B= 1,.., N} again to decrease the non-optimality measure of
the support, i. e. 8 (Foup) < B (Tsup)- These transformations involve essentially the duality theory for
the problems (5.31) — {5.35) and (5.69) — (5.70) and exploit the e-optimality conditions developed

here. These results are the first in this general area and work is currently proceeding in a number
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of follow up areas. They can be used for sensitivity analysis of optimal control in the presence of
disturbances. In the case of the ordinary linear control systems, some details of such analysis can
be found in [39]. The developed methods can also be used to construct the differential equations
for the switching functions of optimal control law that can be applied for the design of optimal

controllers and synthesis of the optimal regimes in many control processes.
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Chapter 6

Delay System Approach to Linear

Differential Repetitive Processes:

Controllability and Optimization

It is already known that repetitive processes can be represented in various dynamical system forms,
which can, where appropriate, be used to great effect in control related analysis of these processes.
In this chapter, we further investigate the already known links between some classes of linear
repetitive processes and delay systems and apply this to analyze control theory problems arising

in controllability and optimal control of these repetitive processes. In particular, the so-called

characteristic mappings introduced in [29] are used to establish controllability properties criteria.
Next, time optimal control problems are considered, where it i8 well known that the separation |
theorem for convex sets is a useful approach for studying a wide class of extremal problems. Here |
we adopt this method to establish optimality conditions in the classic form.

It has been conjectured that such a setting is appropriate for the development of numerical
methods for optimal control problems and related studies and on which very little work has been
reported to date. The results developed here provide (part of) the theoretical background for
further work aimed at the efficient computation of optimal controllers for these processes. Some

areas for further research are also briefly discussed.

6.1 Background

The differential linear repetitive processes [51] are defined over 0 €t < &, k= 0, by the state space
model

e (£) =Ampia (8) + Bugra (t) + Boye(t) 6.1)
a1 (t) =Czesa () + Dugsa(8) + Doyi(t)
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Here on pass k, Txk(t) is the n x 1 state vector, yx(t) is the m X 1 pass profile vector, and ug(t) is
the r x 1 vector of control inputs. To complete the process description, it is necessary to specify
the boundary conditions, i e. the state initial vector on each pass and the initial pass profile. Here
no loss of generality arises from assuming Tr1(0) = drs1, k 2 05 and yo(t) = §(t), where dity 18
an n % 1 vector of known constant entries and §(t) is an m X 1 vector whose entries are known
functions of ¢ over p<t <

As mentioned before, the repetitive processes posses many other equivalent representations
which can be better guited to the analysis of particular problems as; for example, 1D equivalent
models enable much simpler characterization of the so-called pass controllability or observability
[29, 32]. Revisit now a few such examples.

1) Singularly perturbed model with slow and fast modes
i (t) =Azre1(t) + Bugya(t) + Bove(t)

R . ) . (6.2)
i1 (t) =Coyk+1 (t) + Capa (i)} + Pugar(t) + Doun(t), 0= 1<é&, k=0

Hence, the standard repetitive process is a limiting case of that of (6.2) for p = 0, detCy # 0. This
approach is the subject of ongoing work and the results will be reported in due course.

2) the Volterra type equation (with respect to the variable k )

k
ippa(t) = Z {Aémkd,-l—i(t) + Biuk-{—l—é(t)} + Dig(®), z141(0) = di+1s k>0 (6.3)
-0
where
Ao A, A= BoDi1C, Bo=B, Bi= B DD, Dy = BoDE, 121

Discrete Volterra eguations and their applications to the discrete repetitive models are given in
[25]. The Volterra approach can be also effectively used for the differential case that is outside the
scope of this thesis.

To obtain another representation of processes described by (6.1) which is the subject of this

paper (for the case L < k < N where N is a fixed positive integer), introduce the new variables

z:[0,aN) - R ¥: [0,aN] — R™, ul0, &N] -~ R, where

z1(t), 0<t<d

5(t) = za(t — &), A < t<2&,
:EN(t—— a&(N - 1)), a(N —1) <t < &N
11 (t), D<t<d

S8 = yo(t — &), G <t < 2é, ,

yn(t — &(N — 1)), a(N -1 <t<aN

86

I — o e




uy (¢), 0<t<é

up(t — &), & <t <24,

u(t) = W

LuN(t _&(N-1), N-1<i< &N

Then, (6.1) can be rewritten in the form of the following delay system

{gt- 0} z(t) f{fl 0} z(t) | |0 By [ett-a | . B o[ u®
o L. llwwy| L€ 0)lv® 0 Do || y(t—@) o D || u®

(6.4)

) | | O _é
L(t}}'{g(t)}’ te a0 (62

Here, I, denotes the identity matrix in R™. In order to complete the correspondence between the

with initial condition

delay system {6.4) and the repetitive process (6.1) we require additional constraints at t = ok, k=
1,...N—-1, which demand that the solution z(t) is discontinuous and has * jumps/pushes”. This

leads to the so-called nonlocal conditions of the form
z(kd +0) = de, keK, (6.6)

where z(k& + 0) denotes z(t) as t — ké from the right. We also assume that the control functions
u(t) and pass profile vectors y(t) are continuous from the right hand side at ¢ = Gk, k=1,...,N-L

It is clear to see that this last representation is a special singular case of
[éig 0 ﬂ?(t)}z An Au} [m(f)} . {Dll DIZ] o(t &) |
0 Im y(t) Az Ax y(t) Doy D2 y(t — &)
B 0 t
+ ult) (6.7)
0 D u(t)

:E(t) =A11:E(t) + A12y(t) + D11$(t — &)+ Dmy(t — &)+ Bu(t)
y(t) =Azz(t) + Azy(t) + Dopa(t — &) + Day(t — &) + Du(t)

which is equivalent to

(6.8)

Finally, if the matrix (Im — Asg) 18 nonsingular, then the second equation can be re-arranged to

the form
i(t) =Ana(t) + Aigy(t) + Dnzlt &) + Diay(t — &) + Bu(t)

) : ) ) (6.9)
y(t) =A21:I:(t) + Dglw(t —_ &) —+ D22y(t - 6!) 4+ Du(t)

where H = (Im — Agp) " H for H belonging to the set H & {An, Do, Daa, D}
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If a linear repetitive process of the form of (6.1) contains time delays such that the resulting

Process model has the following form over 0 <t<@1<ks N,

Fpa1(t) =Azpa(t) + Aqzpia(t — B) + Burna (1) + Bowk(®) + Bk —h)

. . . . N . . (6.10)
yra1(f) =Czpsa(t) + Eyzpar(t — BY + Dursa () + Doys(®) + Dot — R)

where F is a real number such that 0 < h < & Then such linear Tepetitive processes can. be

presented in the multiple delay differential system form of
4 on(t)] {A 0}[$(t)}+ 0 By | [at—-& | B oo lfu®
0 Im || y(®) ¢ ool u) 0 Do yit—a | 10 D )
+ A_]_ 1] x(t — k) N 0 B__l x(t - h— &)
Gy 0| ye-h) o Doy || vt h-&

(6.11)

with initial conditions

z(6) | Y te[~&0 [m(t)]:v(t)l —&— h,—é 6.12
Lf(t)] {g(t)}’ ctat | Sl g T ) G

and t nonlocal conditions
z(ké+0) = de, ke K. (6.13)

where ¥(¢), p(t), §(¢) are the corresponding initial conditions in (6.11).

6.2 Hybrid delay model for differential repetitive processes
ther study consider first the case when the nonlocal conditions of (6.6) are absent.

As a basis for fur
xample, the initial condition n (6.1) for the

This can be realized under the assumption that, for e

current pass coincides with the end point state of the previous pass, 1. €. rp1{0) = zx(a), that

occur often in machining operations. Guch an assumption Is needed to avoid the presence of a

nonlocal impulse initial conditions at the primary stage, which can be the source of significant

difficulties.

The system under the consideration is now given by the following pair of differential and dif-

ference equations

(1) =Az(t) + A_yz(t — h) + Boy(t) + B_y(t — k) + Bu(l)

(6.14)
y(t) =Cz(t} + C_1z(t — h) + D_iy(t—h)+ Du(t), teT = [0,a]
with initial conditions
z(t) = f(t), t € [—h,0), z(0) = Zo, y(t) =glt), t € [=h,0] (6.15)

88




where z e R?, y € R™, v € R, and « and h are given real numbers such that A < a. We also

assume that the control function u(t) is piecewise continuous on the interval [0, a}. The differential
linear repetitive process (6.1) now follows immediately as a special case of this last model structure

when choosing the matrices in (6.14) as

A=A,A4=Q1%=Q1Lﬁ:%,B=B,C=é,a4=&lli=ahD=ﬁ
and @ = &N, h=o.

It is well known [35, 49] that a solution of the time delay differential equation can be found
by the step method. In other words, by the application of the standard integration step-by-step
method on each subinterval [kh, (k+ 1)A) (with nonnegative integer k) we can construct the solution
as the solution of an appropriate ODE. Let us focus on the smoothness property of the solutions
as it follows from this procedure. Consider the first delay-interval, and more at the moment £ = (.
Due to the form of the differential equation (6.14), and since the initial condition (6.15) is chosen

arbitrarily, one can say that
#() im0 # F(B)le=0- = E(B) =0~ (6.16)

. o. there is a discontinuity in the first derivative of the solution z(t) at the moment ¢ = 0. Due
to this fact we consider the differential equation (6.14) for t > 0 and use the separate function
value z(0) = o in the initial data (6.15). This remark can be extended to the next delay-intervals
(kh, (k+1)h), k>0, but, note that the solution is getting smoother from one delay-interval to the
next at the moments t = kh, k> 1. Next, from the difference equation (6.14) it follows that at the

moment t = 0 we have
mm:cam+cqﬂ—m+94ﬂ—m+pmm, (6.17)

i e. the value y(0) of the pass profile y(¢) is determined by the initial data and the value of the
control function u(0). For this reason we consider the control functions u(¢) that are continuous from
the right hand side, and, for the sake of brevity, let the left side imit value be u(0-) = tli%l_ u(t)
which coincides with g(0).

The pair of functions (z(t),y(t)) is termed as a solution of the system (6.14) — {6.15) for the
given control function u(t), if they satisly the differential equation (6.14) almost everywhere on
the interval [0, a] and the difference equation (6.14) for all € € [0,h]. It is known that under the
given assumptions the solution z(t) is absolutely continuous and y(t) is piecewise continuous on
the interval [0, a].

Systems described by the equations of this form have been discussed in [1, 47, the first that
results in the optimality conditions for the nonlinear version of the system (6.14) — (6.15) were
obtained in [63], and some observability and controliability problems for a particular case of the
system can be found in [3]. Here we present in an unified form some results on controllability
and optimization that are relevant and necessary for a deep theoretical background for control of

repetitive processes.
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6.2.1 General response formula

The solution of the system (6.14) — (6.15) can be constructed by the step-by-step procedure for each

subinterval of the form {ih, (i+1)h), i=0,1,.. e where g = || denotes the integer part of the
that the recurrent procedure based on the equation

fraction . First, it is straightforward to show
(t) on the time interval [0,2], > h, £ € (qth, (@ +1)R)

(6.14) leads to the following representation of y
where gt = [%]
q—1

qt
y(t) Cm(t)-t—ZMJHw(t—(j +1)h) -’;—ZGju(t—jh)
3=0 (6.18)

FKgg(t— (g +Dh) + W f(t— (@+Dh)

and for t € [0, R)
y(t) = Cz(t) + Du(t) + D-1g(t -~ By + Caf(t— h),

where
M1 = Dj_l(o,_l +D_10), Gj= .Dj_lD, K; = Di_lc’_q, W; = Df:_"il, Ma=C, ji= 0,1,---
(6.19)

Noting the formula (6.18)~(6.19) and using the recurrent pro cedure on the intervals [0, k), (R, 2h), . .-

allows us to rewrite (6.14) as
g+l g+l

sty = 3 Hiwlt—( (j - k) + ZVu (t— (G — Dh)
G=1
b Qguag(t— (g +11h) + Pyarf(t — (g +1R) (6.20)

where
Hy =A -+ BoC, Hy=A+ Bg(C_1 + D_lc) + B.1GC,

H; =(BoD’7 + B (Co+D-1C), § =200 @ 7F 1
(6.21)

V, =B + BoD, Vi = (BoD'7' + B, DD, j=2-s D
'——(B()D 1+B 1D%1)O_1, Qi = (B(‘_)D.l“t'B_ )D 1 P = A_ 1+B()C_
hybrid system of (6.14) can be represented by retarded

Formula (6.20) says, in fact, that the
mber of delays. The amount of delays is increases with the

differential equations with varying num
growth of 1.

Next, multiplylng b
d then integrating yields on the left hand side

oth sides of the equation {6.20) by the function F(t,7), which is unknown

at present, an

x(T)dT (6.22)

t i
/F(t, T):b('r)d'r’ =z(t) — F(t,0)zo — f BFE(,?T)
0

o]

a0




——v—

where we set F(¢,7) =0, V7> 1, and F(t,t —0) = I,,. Next, substituting s = 7 ih in each of
the integrals on the right hand side, and noting that
F(t,7) =0, V7>, () = f(£), t € [~h,0), z(t) =0, VE< ~h

together with (6.22) leads to the following formula

Qt+1
aF(t,7)
(£) = F(t,0)z0 + Hoalr — (G — DR)dr + | —2—a(r)dr 6.23
. 70 f L) Hja(r — G ))+O] ) oryars (629)
¢ gl
bfqzl F(t,m)Viu u(r— 0~ Dh)dr + _jth+1g(’T— (ge + 1)h)dT + qut+1f(T — (ge + Vh)dT
iz

= F(t,0)zo + Z fF (t,7+ (G — 1)) Hjz(r)dr + 21 fF(t 7+ (§ — DhYVulr)dr
j=10

L5 f Fit,r + (- DRH;I()dr+ j;F(t, 4+ (g + DB \Pqﬁl F(r) + th+1g('r)} dr

=1 -

Now define the required function F(t,7)asa solution of the following differential equation

OF(t,7) _ ZF(t r+ (G- VR H; Ft, =0 ¥r>t Ft, t—0) = In, {6.24)

aT

j=1

(where F'(2,1— 0) denotes F(t, r) evaluated as ¢ = 7 from the left) whose properties can be found,

for example, in [29]. Finally, noting (6. 18), we have the following formula. for the solutions of the

system (6.14)‘(6.15)

@1 9 g+l
z(t) =F(t, 0)zo0 + Z fF(t,'r-%- (4 Dh)H;f(r)dr + z /F(t 7+ (j - DR)Vyu(r)dr+
=12y .
[

0
f F(ta'r + (Qt + l)h) [Pq\t+1f(T) + th+1g(7)]dT, t=0;
B (6.25)

4] D
J(8) =CF(t,000 + j CF(t, ) Hy f(T)dr + ] CPt, 7+ 1) {Plf('r) +ng(7)]dr—-
—h —h

n / R rViu(r)dr + Caft =B+ Daglt =R+ Du(t), t € [0,h)
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-1
y(8) =CF(t,0z0 + Y MjnF(t— (G + 1Dk 0)zo+
i=0

NN [ MF(t - th, 7+ jh)Hjpa f(7)dT+

—1: I||.||,.Ir'.||I — ”.’ T |_Ij'|l + l -||:|Ill:llfllj___| |.|'i',.'j| - i_L,J”I____I:.J.III__._:-!HI._ v (6.26)
f={} " i
fi— k=L t

+y [ MF(t — th, 7 + FR)Vipiu(T)dT+
1 | | 0

=3 ¢
Y Gult jh) + Kq19(t — ah) + Weer [t — @h) @ = [E]’ t=h

which clearly is the general response formula for (6.14).

6.3 Controllability

Tn this section we consider a controllability of hybrid system of (6.14) which clearly must be a
fundamental element of a mature systems theory for linear repetitive processes and play a significant
role for application areas. The formula (6.25)-(6.26) is & required starting point for this study.
Here it should also be noted that there exists more than one distinct controllability notion, see €. &
[41], and that this area is far from being complete for the repetitive processes and delay systems

considered here.

6.3.1 Pointwise completness and controllability with respect to initial data

In general, for differential systems with retarded arguments and, in particular, for hybrid differential-
difference systems, the so-called pointwise completness {65, 66} pays a key role. In order to formulate
this notion we introduce the following notations. Let C"[--h,0}, h > 0 denote the vector space of
the continuous n-vector function f : [-h,0] — R™ The solution of system (6.14)—(6.14) (in the
absence of input actions, i. e with B=0, D=0) corresponding to the initial data (6.15) where
f e C[-h0, g€ Cc™—h,0], zo € R 18 denoted by z(t) = z(t, f, 9, o) y(t) = y(t, f,9,%0)
The reachability set for the state variable z(t) of the system (6.14)—(6.15) at the given moment
t* € [0,7) is defined as follows

R (th) = {:L‘ cmr® .z =xz(t"9f o), for all f e C"[—h, 0], g€ C™-h 0], o € Rn} (6.27)
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By analogy, the reachability set for the pass profile y(t) of the gystem (6-14)—(5-15) at the given
moment t* € [0,T] is defined as

R, ) ={yeR" ¥ = y(t=, g, [,@0), for all fe€ C—-h,0l, 9 € Ccm™=h, 0l %0 € R} (6:28)

For many cases an escential question is: is reaching the Jesired state and/or pass profile position
dependent on the choice of the initial data? The following definition is & formal description of this

problem.

Definition 13. It is said thot the system (6.14)—(6.15 ) is pointwise complete on the interval {0, T
if

Ro(t) =R" and R,(t) =R" for all t€0,T). (6.29)
If for some t* € [0,T7] the conditions (6.29) are not srue then the system s called pointwise degen-

erate ot the moment t*.

The notion of pointwise completness wWas introduced first in [65] for the study of the controlla-
bility of linear differential time delay systems. Some details and an overview of existing results can
also be found in the survey [42]. It is obvious that the ordinary linear differential system of the
form #(t) = Az(t) 18 pointwise complete since for any # and z* € R" there exists z(0) = zo € R”
such that the corresponding solution satisfies the condition z(t*, To) = z*. Also, it is proved that
each stationary linear differential system with constant time delay is pointwise complete in the case
n = 2. The following example shows that the presence of a " difference” equation in the hybrid
system destroys the pointwise completness of differential time delay system with n = 2.

Example. Consider the hybrid system of (6.14);(6.15) on the interval t € [0,T] where & <
T <2h, n=2, M= 2 h=In2 and the following choice of the matrices

0 2 -1 0 1
A= 1A—1: aB~1: 2 7BD=01
01 -1 1 0
2 0 0
C= , Oy = 0 ,D_1=O,B=0,D=0
0 2 —4 0

Substituting the function y(t) from second equation Into the first of the system (6.14)«(6.15)

= S

(6.30)

corresponding to the given choice of matrices leads t0 the following time delay system

¢(t):“} ﬂz(tw{j Zlm(t-h%\—{_g Hmu-zm (6.31)

Thus the state variable of the considered hybrid system (6.30) is described by the retarded dif-
ferential system {6.31) with multiple delays. For simplicity, next the matrices involved in (6.31)
are denoted by A, Ay, Az, respectively. It is known {see, [42]) that & linear stationary differential
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system with multiple delays is pointwise complete if, and only if, the following conditions
N
'ra,nkMO =n+ni, where Ny = Zf‘aﬂkMi(Ai) (632)
i=1

hold. Here the matrices MO and M;();) are defined by spectral parameters of the operator
W, e ™) = (M —A—e AL~ A, AeC (6.33)
associated with the system (6.31). In the considered case we have

A+ 2eM -2
e——)\h. + 26*2)\?1 N, W zeﬂkh

WA e ) = { K , det W{A, e~y = 2% — A (6.34)

Hence, the eigenvalues are N =0and A=1. Further, noting h =In2, we have

2 -2

3 -3

i\ . Ma(xg) = WA, e M) am1 = { i —12 ] (6.35)

Ml()\l) - W()\,e—Ah)h:D = i

and the constant (n +1)n % n? (in this case 6 % 4) matrix M 0 ig defined as

Mi(m) O L0
M= 0 M) |, wheel= [ . 1 (6.36)
I I

Tt is easy to verify that

2 -2 2 -2
rankM, = rank R =1, rankM= rank =1

-3 1 -1
and
9 20 0 |
3 -3 0 0
0 0 2 -2
rankM® = rank = 3.
0o 0 1 -1
1 0 1 0
0o 1 0 1]
Hence

3 = rank M <n4+n=4

which immediately shows that the considered system is not pointwise complete for the delay value
h=In2

Note that the eigenfuncions corresponding to the given eigenvalues A =0, Ag=1are ¢ (t) =
(1,17, ¢alt) = (ef,et)T. Tt is obvious that the rank of the fundamental matrix, the entries of which
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are the given eigenfunctions, is equal 1. Hence the linear space formed by these basic functions is
isomorphic to the space R. This means [66] again that the system under consideration is degenerate.

For the hybrid differential-difference systems links between the pointwise completness and con-
trollability notions exist. We start here with a particular case of the state controllability with

respect initial conditions.

Definition 14. The system (6.14)—(6.15) (with B =0, D = 0) is said to be state controllable
with respect to initial date af the given moment t = T if for any n-vector cy € R™ there exists
the initial functions g(t), f(t), t € [=h,0] such that the corresponding solution x(t, g, f,xo) of the
system (6.14)—(6.15) salisfies the following condition

$(T, g:f! 930) = Cr (637)
Now, the following theorem can be stated.

Theorem 13. [{2] The system (6.14)—(6.15) (with B =0, D = 0) is state controllable with
respect to the initial data at the given moment £ = T if, and only if,
i) system (6.14)—(6.15) is pointwise complete;

it)
rank{ Hj[H1, Ha, o HypyGops Pyg], i=0,...,nfp =mn (6.38)
where the matrices Hy, 1 =0,...,q7, Gy, Fgp o7e defined in (6.21).

The proof of the theorem and other results can be found in [42] and, hence the details are
omitted here.

By analogy to Definition 14, profile controllability with respect to initial data can be introduced
and studied.

6.3.2 Point pass profile controllability

For nD systems as well as for repetitive processes there many possibilities for introducing various
controllability notions. In this subsection we introduce and study the following point pass profile

controllability, which plays a significant role in further analysis.

Definition 15. The system (6.14)-(6.15) is said to be poss profile controllable at the given points
Bo, By« -, By, such that 0 = Bo < P <...Bu <o if forany ¢ € R™, §=0,...,v there exisls
a control vector u(t), t € [0,a] such that the solution y(t,g, f, z0,u) of the system (6.14)}-(6.15)
corresponding to the zere initial dato gty =0, t € [-h,0), f(t) =0, t€ [—h,0), zo = 0 satisfies

the following conditions
yle - 5;,0,0,0,u) =¢;, 5=0,1,...,0 (6.39)
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We suppose that the admissible control functions u(t) belong to the class of all piecewise con-
tinuous functions on the interval t € [0, al with values in the space K™. This class is denoted by
U}

Physical motivation for this form of controllability is the requirement that the pass profile
vector takes pre-assigned values at particular points along the pass. Note also that some first
results concerning observability and controllability problems for particular cases of the system
model structure considered here can be found in the earlier paper (3].

From (6.25) we have

; t
y(t) = iGju(t —jh) + /R(t,T)u(T)dT t>h, (6.40)
F=0 0
where
T . M
R(t,7) = g ;0 Of MF{#—Ih,7 +im)Vis1,  @= [E] (6.41)

Note that in (6.25) r(¢, g, f,zo) = 0 for the zero initial data g(t) =0, ¢t € [-h,0), f(t) =0, t €
[Ah,O), Tp = 0.

Theorem 14. The system (6.14)—(6.15) is pass profile controllable at the given points B, f1,. -, B
if, and only if, the following equalities

TGo=0, ..., g7Cy =0, gl Rla—Fi7)=0, 700G, i=01L..,v (6.42)
hold only when g; = 0, where g; €R™, 1 =0,1,...v and g = [“—;@] .

Proof. The property to be established bere requires that the following set of equations

a—f;
¢ = Goule — Bi) + ... + Goula— fi — gih) + / R(a— Bi,T)u(r)dr, i =0,...,v (6.43)
D

can be solved with respect to the unknown vector u(t), ¢ € [0, a] with piecewise continuous entries

and r-vectors u(a — B; — gih), i =0,...,v. Consider therefore the following set

Qqs
Y= {y =(Yo,---, W) € RV Ys = ZGUJUjs+

3=0
s (6.44)
+ f Rl — s, Tyu(r)dr, ¥ vjs € R 1), Yu(-) € U()}
0

where U(-) denotes the set of all admissible control vectors. Then it is easy to sec that the set

v « ™+ js a linear subspace of R™(+1)
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Now suppose that conditions (6.42) hold but the system is not pass profile controllable. Then
this means that ¥ # R™@+1), Since the set Y is a linear subspace of R+ there exists a
nontrivial vector j = (G1,-..,8v) € R+ g £ 0, such that § L Y. This, in turn, means that
there exists a nontrivial vector § # 0 which satisfies the conditions of (6.42) and a contradiction
has been established.

Suppose now the system is controllable but condition (6.42) holds for some nontrivial vector
¢¢ & R™+1)_ This means that g* 1 Y. Hence Y # R™¥*) which is a contradiction and the proof
is complete. [ |

Theorem 14, however, is hard to apply to checking controllability. Another approach would be
to apply the so-called characteristic equations approach introduced in [29] to obtain the effective
criteria to check the controllability properties of the considered model. To obtain the characteristic
equations that follow, apply the Laplace transform to the system (6.14)—(6.15) with zero initial
data

pX(p) = AX(®) + A_1e™P X (p) + BoY (p) + B-1e™*Y (p) + BU(p),
(6.45)
Y(p) = CX(p) + C_1e P X (p) + D_1e"P"Y (p) + DU(p).

Next the following substitutions are to be done: replace X(p),Y (p),U(p) by the (n x r), (m x )
and (r x r) - matrices Xg_1(t), Yz (t), Ug—1(t), k=1,2,..., 1€ [0, a]; the differention operator
p is replaced by the shift operator with respect to the discrete variable k, the operator e PP is

replaced by the time delay operator such that the following relations

X(p) —Xe_1(t), e P*X(p) —— Xt — ), pX(p) -~ Xi(t)

(6.46)
Y(p) —Yi-1(t), € 7"V (p) — Yt —h)
hold. This enables rewriting (6.14)—(6.15) in the following form
X (t) =AX,_(t) + A 1 Xk 1 (t —h)+ BoYi1 (t) + B_1Y,_1(t — R} + BUy_1(t)
(6.47)
Y,'cfl(t) =CXk_1(t) 4+ C 1 Xp_1(t-h)+ DY (t— h) + DU _(t), t€ [0, ]
In order to complete this setting it is necessary to determine the initial conditions
Xo(0) =0, Xi(t) =0, Vi <0, t<0; Yo(0) =0, Yi(t) =0, Vi<0, t <0
(6.48)

UO(O) :I'ra U’t(t) =90, Vi 7£ 0,1 7£ 0.

Now, the following theorem can be stated, the proof of which is very strongly motivated by the
results of the earlier paper [3].
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Theorem 15. The system (6.14)—(6.15) is pass profile controllable at the given points o, B1,. ... By
if, and only if, the following rank condition holds

[ Yi(t — Bo) |

Yi(t — —
e ‘L(t ﬁl) z 0, fen n(qa + 1)

= (v+ L)m. (6.49)

| Yi(t—B) te 0.8+ (g +1)A] |

Proof. The conditions (6.42) of Theorem 14 yield that the process (6.14)—(6.13) is pointwise

profile pass controllable if, and only if, the following conditions hold
rank{Go, G1, - -, 0ge } = m{¥ + 1) (6.50)

and
T m(v+1)
¢'Fo,7)#0 7[00 for all geR , 970 (6.51)

where (m(v +1) xr(v + 1)) - matrices §; are given by

G; = diag{Gi,...,Gi},  where Gi= D D, i=0,...,qa (6.52)
and [n(v + 1) x m(v + 1)] matrix function F(a, 7) is defined as
MoF(a, )V, 7€ o — B, 0)

(Mof(a, T) + M1 F(a, T +ﬂ1))V 7€ [a— fr, )

Fla, ) = ¢ (6.53)
L MiF(o, T+ B)V, 7€ (a- B, a— Bu-1l,
e
where
V=[Vi,Va, - Vsl
(6.54)
My = ‘:On(q+1)xmka [Mo, - -, Mq}T- O‘n(q-}-l)xm(u»k):\: k=0, ..,v
and
Fla,r)  Flayr+h) Flom+2h) -+ Flar+ (@ 1)h) Flor+ vh) |
F(a,7+h) Flo,t+2h) Fle,7+3h) F(a, ™+ vh) 0
Flay7) =
| Fla,7+vh) 0 0 0 0 ]
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Note that to design the function (6.53) the well-known properties Flt,T) =0, t<T F(t—$,T) =
F(t,s+7): t < g < 7ofthe fundamental matrix F(t,T) are used. From the characteristic equation
(6.47)—(6.48) it follows immediately that Yo(ih) = DD = Gi and, hence,

Gi = diag{Yo(th), - ,Yo(ih)}

which contains a part of the required matrices in (6.49).
To select the remaining matrices in (6.49), consider the n(qa—\—l) vector—valued function (g, Ty =

g Fa, 7). Then it can be shown that the function § (a,T) satisfies the Sollowing mabrix differential

equation
Hy v 0 - 0 O
Ho H 0 0
é‘g—(g’r—{l = —F(a,TH, where H = (6.55)
HQa Hq.x-l HQQ—z e H2 Hl

Hence the function w(g,T) satisfies an ordinary homogeneous Jifferential equation of order n{ga+1)
and it is known that such a differential equation has 2 trivial solution if, and only if, its initial
conditions are Z€ro. From [29] it now follows that the function considered here I8 analytic on each
sub-interval (¢ — kh,o—(k 1+1)h), and dis-continuous at 7 = a—Bi—gh, 1= 0,...,% 1= 1,.-0,4
where the jumps are given by

At (g, — i — 1) =90 @~ AT ihs0) - 6 (ga—Bim b0
(6.56)

=(Fl)i+ngY3(a _ i —jhy, 1=0,- 7 j=1,....9
Thus, A (g, — g —ih) = 0, and, therefore ¥(g,T) = 0, if, and only if, the matrix (6.49) has

the maximal rank, which completes the proof. ]

6.4 Optimization

In this section the following time optimal control problem for the process (6.14)-(6.15) is consid-
ered.

Optimization Problem. For the given initiol datez(8) = f (), y(t) = g(e), t € l=h, 0), z(0) =
xq find the minimal time T and the control function u(t), t € [0,T] such that the corresponding
trajectory

z(t) =0, tE 7 —h T) (6.57)
is in the equilibrium state.

Tu effect, the solution to this problem will drive the system dymamics t0 the zero equilibrium

state as quickly as possible.
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Note that in this case, subject to some additional assumptions, the control function on the last
interval [T — h, T can be represented in the feedback form. In particular, suppose that the matrix
B from (6.14) is invertible. Then from {6.14) we have

u(t) = —BH A=t — h) + Boy(t) + Byt — h)] (6.58)
Qubstituting this into (6.14), and assuming \hat there exists [E + DB Bq) ~! yields finally
u(t) = Nalt— b+ My(t — h), t€ [ =Tl (6.59)
where
N =[E+DBBo] [C-1 - DB'AL|, M=[E+ DB By} [D-s - DB%]  (6:60)

The representation (6.59) shows also that the complete controllability can be solved for the partic-
ular given case on the base of relative (pointwise) controllability formulated above. Indeed, if there
exists a control function u(t), t€ (0,1 - h] such that (T —h) =0 (for the considered case it is
sufficient to choose the single point for v = 0, B, =hand &y = 0) then the following setting

.. {u(t), te0,T —h)
Nx(t —h) + Myt — Ry, tell— h,T|
solves the problem of the complete controllability. Note however that this approach is however of
a limited significance as in the majority cases the state dimension considerably exceeds the input
dimension. Then, the semi inverse approach can be applied, which is the subject of ongoing work.
Now let T' be a fixed time moment. The class of the admissible controls u(t), ¢ € [0,T] is the set
of all piecewise continuous functions such that u(t) € U, t € [0,T), where [/ is a compact convex

set from R”. By analogy to (6.40,) the solution of the process (6.14)—4(6.15) can be rewritten in

the following form
i

x(t) =s(t,f,g,:ng) + jS(t,T)u(T)dT,
0
(6.61)

i t
y(t) =r(t, f, 9 zp) + Z Giu(t — jh) + / R(t,7)u(r)dT
j=0 0

where (¢, f, 9, %0) and R(t,7) were defined by (6.41) and

i+1 9
s(t, f,g,70) =F({,0)z0 + Z / Ft, v+ — DR H; f(T)dr+
J=1"p
0
+ f Pl 7+ (i + D) [P f(7) + Quwag(rlaT, (6.62)
Zh

i1
S{t, T} =ZF(t,r+ (i — D)V, i= ['1_}]

j=1
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Definition 16. We say that the control function u(t), t € [0, T} is T-admissible for the system
(6.14)—(6.15), if the corresponding trajectory satisfies the following condition

z(t) =0, t €T —hT] (6.63)
Introduce
4= {.’IJ eR” ‘ T = S(T —h. £, 9 "‘UD) for all (f:g:mf)) = C[—h,O] X C{——h,O] X Rﬂ}

and
R= {s € Z | such that forz =3 J T-admissible control u()} (6.64)

In fact, the set R is the reachability set for the system (6.14)—(6.15) with (6.63) in place. We
assume that R # O, which is true if the system is controllable. Equivalently, we suppose that there

exists at least one collection of the initial data

:E(t) = f(t): te ["h’: 0), 35(0) = &0, y(t) = g(t)a t € [=h, 0]

for which there exists T— admissible control functions. Let Up(:) denote the set of the all T~
admissible control vectors for the system (6.14)‘(6.15) corresponding to the set R. Then it is easy

to show that R is closed and convex.

Theorem 16. For the given initial data f(1), 9(t), t € [—h, 0),z(0) = zo there exists T'-admissible
control if, and only if, the following inequolity
T—h
max {gTs(T — h, §,g,z0) + inf ] gt S(T — h, T)u('r)dr} <0 (6.65)
lglj=1 uclr ()

holds.

Proof. Necessity. Let Optimization Problem be solvable for the moment 7 and u(t), t € [0,T]
is a T-admissible control function. This means that
T-h
0= o(T— ) = $(T — b f,9,20) + / S(T — b, Tyulr)dr.
0

Multiplying both sides of the last equality by the vector g € R™ yields

T—h
gTS(T —h, f'n gumﬂ) -+ f gTS(T - h, T)U(T)d"!’ =0.
0
Hence
T-h
gTS(T h'1 f:g:mﬂ) + lnf f gTS(T - h, ‘T)’U.(’T)d’r _<_ 0
uelir() J
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and (6.65) holds.

Sufficiency. Let the inequality (6.65) bold for the given initial data (f, & zg). On the contrary;
assume that for this data there is no any T-admissible control u(-) which solves the problem. This
means that the corresponding vector =T —-hf i & o) ¢ R does not belong to the set R,
ie s*(T—h/f, 9 zp) € R. Since R is a convex get then there exists a supporting hyperplane with
the nontrivial normal vector g* € R", ||g*)| = 1 such that the following inequality

TSt frg,m0) > 075, Y SER (6.66)

holds. Since s € R then there exists a T — admissible control function u(t), £ € [0, — h] such that

T-h
5+ f S(T - h, T)u{r)dr = 0.
0

Hence, (6.66) yields that

T-h
FTS (L — by £,9,50) + j S TS(T — hy)ulr)dr > 0
0

and since s is an arbitrary vector from the set R then the last inequality 1s true for all u(-) € Ur(")-

Therefore
T—h
gTs* (T —h, f,9,%0) + inf ] gT8(T — h,Tyu(r)dr > 0
uelUz()
which contradicts (6.65)- W
Next, consider
T-h
A(T) = max {gTs(T — h,f,g,0) 4 inf ] g S(T —h, T)u(r)d'r}. (6.67)
lgil==1 uelr ()

It can be shown that A(T) is a non decreasing, continuous function, and hence we have the result

below for which we also require the following definition.

Definition 17. Let p: R — R be a function. Then we say that 70 € R is the minimal root of
equation p(z) = 0ifp(z*)=0 and there is no 2" € R such that 2* < 22 and p(z*) = 0.

Theorem 17. Given the initial data f(),9(), t € [——h,O),o:(O) — 7, the moment 70 s optimal

if, and only i, 79 is g minimal Toot of the equation
A(T) =0. (6.68)

Proof. Necessity. Let ul(:) be the optimal control for the optimization Problem. Then
Theorem 16 gives A(T®) £0. At first, suppose that A(T?) < 0. Since A(T) is a non decreasing and
continuous function then 37, T < T° such that ATY) < AMI)<0.In accordance with Theorem

102




16,the optimization Problem is solvable with T < T® which is impossible. Thus, 79 is a root for
the equation (6.68). The minimality of T9 can be shown analogously.

Sufficiency. Let T° be the minimal root of A(T) = O for the control function u’(t), t € [0, T0—h].
Suppose 10w that this control function is not optimal for the given initial data. Hence, there is
the T-admissible control function #(t), t € [0,T — k] where 7 < T9. Then Theorem 16 yields
A(T) < 0. However, noting that the function A(T) is non-decreasing, we have AT) = A(T?) =0,
which contradicts the minimality of the Toot 79, which completes the proof. u

Finally, the optimal time 79 is given by the equality (6.68) and the optimal control function

u0(t) is determined as

T—h T—h
é%in() [ T S(T — h,ThulT)dT = f ¢*T8(T —h, ryul(r)dr (6.69)
welr(-
0 0

where ¢ is the vector which maximizes (6.67).
These optimality conditions can be presented in a more practically usable form for some partic-
ular sets of admissible controls U(+). In the next section the time optimal control problem subject

to integral control constraints is solved.

6.4.1 Time optimal problem subject to integral control constraints

Consider the following optimization problem: Minimize

T — 1 6.70
o (6.70)

over the solutions of the process

#(t) =Az(t) + Azt - h) + Boy(t) + B-ay(t - h) + Bu(t)

(6.71)
y(t) =Ca(t) + Caz(t —h) + D_1y(t — )+ Du(t), t€ [0, T]
with initial conditions
:L‘(t) = f(t)a te [—h70)3 93(0) = Z0, y(t) = g(t)u te [_h1 0] (672)
subject to state constraints
() =0, t € - h, T (6.73)
and integral control constraints
T
U() = {u() : /uT(T)u('r)d'r < 1} (6.74)
0
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ction has to satisfy the equation A(T) =

ol fun
ulate minimum

eorem 17 an optimal time conbr
(6.62) reduces our task to cale

In accordance with Th
(6.67). Noting

0 where the function A(T) is defined in

in {6.67) as
T-h 41
(6.75)

Mo 2 [ DRCEUS G - ORyVyulrdr — ok

subject to
(6.76)

T
f wl (yu(r)dt <1
0

Using (6.59) and (6.61) allows rewriting (6.76) as

T—h T
f o (Tu(r)dT + f (N:Js('r —h)+ My(r -

T—h

BT (Na(r — h) + Myl - hy)dr =

4]
T—h
(6.77)

T-h
=7+ [ wT ()| Im + g(T)]Tu(T)d'T + / [w(r) -+ cp(T)]Tu(T)dT-i-
0

T
y
0

I, is the identity (m x m)-matrix, and

@

hT-h
f ST () [ (r,0) + B, )] u(@)dr =1
0

where
T
T f (Ns(r — ) + Mr(r = 1)

T-h

}T[Ns(r —h)+ Mr(T — k)| dt

T—h
{ST (6, ")NT [Ns(B) + Mr(8)] + [sTONT + T ()MT] MR, T)}d@

T—h

(0,7) = f
T—2h

sT(¢, ryNT[NS(®,8) + MR((t,0)] + BT (t,T)MTMR((t,G)} dr,

[ST(B,T)NT + RT(G,T)MT]MGO, re(T—2hT— h)
[T (0 + P, FINT + RT (0 + b, ryMTI MGy, 7 e (T —3h,T —2H

Y(r ) = 1

e [0, h];

| (870 +ar - 1)k, 7)NT + BT (0 (gr — D PYMT ] MGr-1;
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(ST(T)NT =+ T‘T(T)MT) MGy, re (T - EH:T"" h\

(s7(r + R)NT + 77 (r + R)MT) MG, € (T —3h,T — 2h]
() = 1 (6.78)

L(ST(T + (gr DANT + rL(r+ (gr — 1)h)MT) MGyr—1, T€[0,h)]

and
(GEMT MGy + GoMTMGre™" ..

+G%“MTMG9T_1E-(QT-1)P*'-, re (T —2h,T —hl
GITMTMG, + GIMTMGae™ + ..

G(r) = 4 L+ GTMT Mgy —ae™ @D, 7 & (T —3h,T — 2h]

GET—QMTMGQT_Z + GET—2MTMG9T—1€—M, TE (h,2h]

| GZ  MT MGy 7 € [0,h]
Here e—*PP denotes the shift operator such that (e7*Phu)(T) = u(t — kh). Using the Lagrange

multiplier method leads to the functional

T—h T—h
T(u) = f gTS'(T — h,T)u(r)dT + )\{T + f ul (1) [Im + Q(T)]Tu('r)d’r+

0 0

(6.79)

T—h T—hT—h
+ f [v,z’}('r) 4 (P(T)]TU(T)dT + / f w’ (1) [\IJ(T, §) + ®(r, 9)]u(9)d*r}
b ©

i
which is subject to minimization with respect to the unknown A and u(t). Now, it is to find the

frst variation 8II for II{w), which can be represented as

T—h
5T1(w) Z_@Iﬁi—ng—)ta:o = / UT(T)ST(T — h,T)dT+
0
T-h T—h
+ j )\{uT () [Im 4+ G ()] T + f [(r) + ()] r+ (6.80)
0 0
T-hT-h

WT (1)K (9, T)u(@)de}v(‘r)d?'
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where
K(,7) = (T(1,0) + B(7,8)) + (IT(r,6) + &' (¢

Since 6M(u) =0 ¥ v(7) for the optimal solution then (6.80) yields

T—h

20(7) [T + G(N)] + 9T T (1) + f u’ (T)K(G,T)U(B)dﬂ} —0 (681)

ST(T - h,7)g + A{
0

The solution of (6.81) can be represented as the following equality

ug(t) = wa(t) + ua(t), where ua(t) = —1>:L(t)g. (6.82)

(n x r)- matrix L(t) satisfy the following integral equations

T—h
f K (0, yus (6)d0 = 0
0

Here the vector u(t) and the

ouy (£)(I +G(&)) +¥) + @lt) -+ (6-83)

T—h

and
oL(t) + S(T — hyt) + f K(0,)L(0)d0 =0
0

(6.84)

To show this it is sufficient to substitute (6.82) into (6.81), which gives

ST(T — h,T)g+ A{z(ul(t) + %L(t)g)) [T+ G(7)] + () + o(T)+

T-—h
+ j uT(T)K(G,T)(u1(9)+-;L(Q)g)d@

[

o]

i}

} = (ST(T — h,T)+ L{T) T+

T-h
[ UT(T)K(B,T)M]_(Q)] =0

0

h
K(8, T)L(G)d@)g + )\[21:,1(1') (Im +G(7) + W(r) +lr) +

er A can be determined by the fact that the required conirol function belongs

T
to the admissible set U(), i e fuT(T)u('r)d'r = 1. Hence
0

The unknown multipli

T-h 1
T+ f [ul('r)Jr—)—\L('r)g
0

T (4 G fia () + 379 dr =

T—h
(6.85)

+ f () = 9(7)) fun () + LI+
0

T-hT—h
+ j f [ua(T) -+ %L(T)g)]T(‘I‘(G,T) + &8, 7)) [u(r) + %L('r)g)] dédr =1
0 4]
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This leads to the following equation for A
(6.86)

1 1
GXE—F253‘+C==O
where the required coefficients are

T—h T-hT—h T-—-h
[ gL TL(r)gdr+ [ f L LT, L0 = 3 | ST(T' ~ b, T)LLT)AT,
0 0 0

a =
0
T—h T—h T—hT-h
b= g ul (1)L(7)gdT + g [(r) + (T L{T)gdT + bf g gtLT(T)K(BaT)ul(‘g)dea =0,
T-h T—h
c= o1+ [ uf(m(I+ G(m))u(r)dr +2 { (@) + o(r)yua(r)dr +

0

T-hT—h
+ Of JUT(T)[@(9,7)+‘I’(9:T)]U1

T—h
(6)drdg =T -1+ g (¥(7) + () ur(r)dr-

and the optimal control for the given T

Thus the required A is the positive root of equation (6.86),
(t) of (6.82) into the basic

d by (6.82). Substituting the obtained control function ig

then is define
es the time optimisation problem to the

tion (6.67) and noting Theorem 17, reduc following:

condi
find the minimal root T9 for the equation

max £{g,T) =0 (6.87)
lgll=1

where
T—h

Lo T) = g7s(T = b fr9:20) + f ST — hyTug(r)dr
0

and the function ug(t) is given by (6.82)-
Hence, the following theorem has been proved

Theorem 18. Optimal time T9 in optimisation problem (6.70)—(6.74) is the minimal Toot of the

equation (6.87 ) and the corresponding optimal control i

0 _
0 - {ugn(t), t e (0,70 - h) 558)
NzO(t — B) + Myt - k), te [0 —h, 7%

where the vector g° realizes the magimum in (6.87), the function ug(t) given by (6.82) and the

matrices M, N are defined by (6.60).

6.5 Conclusions and Further work

etitive processes have been studied from the perspective of differential

Tn this chapter differential Tep
| models for this class of systems

The new mathematical have been introduced

delayed systems.
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and primary analysis is provided. First of all, the controllability and time optimal control have
been outlined. It is necessary 1o add that this work covers only first attempts 10 investigate the
differential repetitive processes from that point of view, and hence a rich field remmains 1o be the
subject of further work. For example, New controllability and observability notions are of significant
interest for further investigations. In particular, the controllability notion which includes so-called
functional controllability (see [40]) when it is vequired to dsive the state variables ab the final
interval o, &+ h) 50 the pre-assigned functions z(t) = @(t): y(t) = ¢(t),t € o, o + Bl This notion

can be given as follows

Definition 18. The process (6.14 )-(6.15) is said to be completely controllable if for any initial
data g{t); t € =", 0}, ft), t € [—h,0), To = 0 of (6.15) there erist the moment t; < +oo
and the control function u(t), t = 0, ult) = 0, t=h such that the corresponding solutions
w(t, g, f, %0, 1)) y(t, g, 20, %) of the system (6.14)——(6.15) satisfy the following conditions

z(t) =0, y() =0, t = t1 (6.89)

In fact, this is required to drive the system at the interval [t t1 + h] to the zero position and
to maintain it during the time t > t1 + h. Related analysis for ordinary time delay system can be
found in [41, 52) and some results on the controliability of the multiconnected system have been
also given in {29, 43].

The results for the linear process (6.14)—*(6.15) developed in this chapter can also be extended
to obtain the necessary conditions for optimal control of nonlimear models. As known, the cost
functional increment method [29] is based on the estimate for trajectory variation generated by the
corresponding control function variation, and in fact uses the linear part of the model. For {his

purpose, we can consider the following nonlinear optimisation problem

i) = Flathelt- h), ()t~ R), u(t)) (6.90)

y(t) = G(w(t),w(t —h),yt— h),u(t)), £ € T = [0,0] (6.91)
with the initial conditions
() = f(), tE€ M 0), =(0) = o, ¥¥) = g(t), t € [=h0l (6.92)

andz e R, ¥y € rm ue R Here it is necessary to assume that the control functions are piecewise
continuous on the interval [0, a] and u(t) € U for all t € T, where U C R" is some prescribed set.
The pair of functions (m(t),y(t)) s a solution of the system (6.90)—-(6.92) for the given control
fanction u(t), if they satisfy the differential equation (6.90) almost everywhere on the interval [0, o
and the difference equation (6.91) for all £ € [0, Rl

Let ﬁo,ﬁl,...,ﬁu, be given time moments such that 0 = Bo < /< By € o and, M; C

R™, i=0,..,¥ be given convex closed sets from R™. Hence, the optimal control problem is to
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minimize the cost functional of the form

J(u) = plyla — Bo)sylo—~ B),-. -yl Bu)) (6.93)

subject to the constraints
ylo—Bi) € Miy 1 =005V (6.94)

over the sotutions of the system (6.90)—-(6.92)). Here p(z1,--- Lya1) 18 B continuously differen-
tiable function. The introduction of this kind optimisation problem corresponds to the notion of
the pass controllability for the given points when it is necessary to optimize the final pass profile
running through the pre-assigned value set at the specified time moments. However, the major task
is to solve the general problem with the nonlocal initial conditions omitted here. These problems

are the subject of ongoing work and will be reported in due course.
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Summary

Thus, the principal results of the Research work are:

o In Chapter 1, Theorem 1 where the estimate for approximating trajectories was established

plz(t),G) <C JI7i vtelo,T], i toi

e In Chapter 2, Lemma 5 where the correct discrete approximation for the optimal control
problems with ”minmax” constraints was gtated :

» Then there is a sequence of perturbations ex = gas N — &0 such that one has a value
COTNVergence ﬁ}}inoo J=J Ly

o In Chapter 3, the correct dicretization and test preparation for a robot model was discussed.

e [n Chapter 4, Theorem 4 (and in Chapter 4, Theorem 9) where the Pontryagin maximum
principle was proved for the control systems (ordinary and repetitive, respectively) in presence of
intermediate constrainis;

e In Chapter 5, for the optimal control in the linear repetitive processes , Theorem 10 an 11
where the constructive optimality and suboptimality conditions were obtained and their correlation
with classic results were established;

e In Chapter 6, we investigated further the structural links between linear repetitive processes
and a special class of time delay systems. This lead to a new controtlability, Theorem 15, and the

optimal control, Theorem 18, is the results for these processes.
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