
 1 

 
 
 

Digital Twin for Risk and Uncertainty Analysis in 
Complex Industrial Control and Automa=on Systems 

Using Ar=ficial Intelligence and Machine Learning 

 
Mustafa Siddiqui  

Submi&ed in total fulfilment of the requirement for  
Masters of Engineering Science (Research)  

Federa5on University Australia  
July 2023  

 
Principle Supervisor: Gayan Kahandawa  

Assistant Supervisor: Linh Nguyen 
Assistant Supervisor: Hasitha Hewawasam  

 
 
 
 
 
 
 
 

 
 

 



 2 

Abstract 
 
Industrial control systems play a crucial role in enabling advanced manufacturing opera8ons. 
However, these systems are inherently suscep8ble to failure. Detec8ng faults at an early stage 
is of paramount importance, as it can prevent the occurrence of fatal and catastrophic 
consequences resul8ng from equipment failures. Moreover, 8mely detec8on and resolu8on 
of faults can save significant costs and 8me for organiza8ons. The failure of these systems not 
only poses risks to operators but can also lead to substan8al delays in the advanced 
manufacturing process, imposing substan8al financial burdens on organiza8ons. 
 
Therefore, a methodology is needed that can be used to avoid the adverse effects of 
equipment failure of industrial control systems to achieve smooth advanced manufacturing 
opera8ons. To achieve this, the methodology should be able to detect the abnormal 
behaviour of the system at very early stages for predic8ve maintenance. This methodology 
can be designed using an extremely popular concept known as the Digital Twin, which has 
gained significant importance in the era of Industry 4.0. 
 
In this research, ar8ficial intelligence techniques will be employed to develop a highly accurate 
and detailed digital twin model. This model will serve as a valuable tool for predic8ve 
maintenance in complex industrial control systems, facilita8ng the achievement of smooth 
and uninterrupted advanced manufacturing processes. Also, the performance of the 
proposed Digital Twin model will be compared with state-of-the-art anomaly detec8on 
approaches.  
 
The digital twin, u8lizing the proposed algorithms, will not only be able to detect anomalies 
but also quan8fy their severity, classifying them into different levels such as minor, severe, 
and faulty opera8ons. Furthermore, the research addresses the generaliza8on challenges 
faced by state-of-the-art approaches, showcasing the digital twin's ability to effec8vely classify 
unseen data as healthy or anomalous.  
 
The results obtained from the analysis and comparison of state-of-the-art approaches with 
the proposed algorithms clearly demonstrate the methodology's capability to detect 
anomalies, quan8fy their level, and classify them accurately and effec8vely in real-world data. 
This valida8on underscores the robustness and reliability of the developed methodology, 
further solidifying its poten8al as a valuable tool for predic8ve maintenance in complex 
industrial control systems. 
 
 

 
 
 
 
 
 
 
 



 3 

 
 

Acknowledgment 
 
I am deeply grateful to my esteemed principal supervisor, Dr Gayan Kahandawa, and my 
assistant supervisors, Dr Linh and Dr Hasitha, for their invaluable guidance and unwavering 
support throughout this research project. Their exper8se, dedica8on, and mentorship have 
been instrumental in shaping the success of this endeavour. 
 
Dr Gayan, in par8cular, has been an excep8onal mentor, providing unwavering support and 
guidance throughout the en8rety of this research journey. His exper8se, depth of knowledge, 
and dedica8on to the field have been instrumental in shaping the outcomes of this project. Dr 
Gayan's ability to challenge and mo8vate me to push the boundaries of my research has been 
invaluable, and his insighRul feedback and construc8ve cri8cism have greatly enhanced the 
quality of my work. 
 
Furthermore, I am deeply grateful for the genuine care and concern that Dr Gayan has shown 
towards my academic and personal well-being. His open-door policy, willingness to listen, and 
willingness to go above and beyond have created a suppor8ve and nurturing environment in 
which I have thrived as a researcher. Dr Gayan's mentorship has not only enhanced my 
research skills but has also ins8lled in me a sense of confidence and resilience that will benefit 
me in my future endeavours. 
 
I would also like to express my sincere gra8tude to Dr MuSooh from Aston University, UK, who 
served as an external supervisor for this project. Dr MuSooh's invaluable contribu8ons, 
guidance, and support have been instrumental in shaping the direc8on of my research and 
nurturing my passion for this project. 
 
Addi8onally, I would like to extend my thanks to Dr Majid Hussain from Heriot-WaV University, 
UK, for his invaluable support and mo8va8on throughout this research journey. Dr Hussain's 
unwavering belief in my abili8es, coupled with his encouragement, has been instrumental in 
keeping me mo8vated during challenging 8mes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 4 

Declara3on 
 
I hereby declare that the project 8tled "Digital Twin for Risk and Uncertainty Analysis in 
Complex Industrial Control and Automa8on Systems Using Ar8ficial Intelligence and Machine 
Learning" is my own work submiVed for the comple8on of my Master’ (Research) degree. All 
the informa8on, data, and findings presented in this project are the result of my independent 
research efforts. I have appropriately acknowledged and cited all the sources and references 
used in this work. No part of this project has been previously submiVed for any other 
academic qualifica8on or degree. I take full responsibility for the authen8city and originality 
of this work. 
 
Muhammad Ghulam Mustafa Siddiqui  
Date: 10th July 2023 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 5 

Table of Contents 

Digital Twin for Risk and Uncertainty Analysis in Complex Industrial Control and 
Automa=on Systems Using Ar=ficial Intelligence and Machine Learning ............................ 1 

Chapter 1 – Introduc=on .................................................................................................... 7 

1.1 Research Objec.ves .............................................................................................................. 9 

Chapter 2: Literature Review ............................................................................................ 12 

2.1 Related Work, Challenges and Contribu.on ........................................................................ 12 
2.1.1: Digital Twin for Industrial Control System (ICBBS) ............................................................................. 12 
2.1.2 Digital Twin Based Anomaly Detec@on ............................................................................................... 13 
2.1.3 Anomaly Detec@on Using Conven@onal Approaches ......................................................................... 13 

2.2: Data-Driven Model ............................................................................................................. 14 
2.2.1 ANN .................................................................................................................................................... 15 
2.2.2ANN PaIern Recogni@on ..................................................................................................................... 15 
2.2.3 Types of ANN ...................................................................................................................................... 15 

2.3 Maintenance Evolu.on ....................................................................................................... 18 
2.3.1 Anomaly Detec@on ............................................................................................................................. 19 

2.4 Research Ques.ons ............................................................................................................. 20 

Chapter 3: State-of-the-Art Anomaly Detec=on Approaches ............................................. 21 

3.1. Anomaly Detec.on ............................................................................................................ 21 

3.2. Anomaly Severity Quan.fica.on ........................................................................................ 22 

3.3. Detected Anomaly Loca.on in Data .................................................................................... 22 

3.4. Performance Comparison ................................................................................................... 23 

3.5. Challenges and Limita.ons with Generaliza.on ................................................................. 24 

Chapter 4: Methodology .................................................................................................. 26 

4.1: Algorithm 1: Digital Twin of ICBBS (Research Ques.on 1) ................................................... 26 
4.1.1. System Iden@fica@on ......................................................................................................................... 26 
4.1.2. Data Collec@on .................................................................................................................................. 27 
4.1.3. Architecture of Ar@ficial Neural Networks ........................................................................................ 27 
4.1.4. Training, Valida@on, and Tes@ng of ANN ........................................................................................... 28 
4.1.5. Deployment of Digital Twin ............................................................................................................... 29 

4.2: Algorithm 2: Predic.ve Maintenance Algorithm for Control and Automa.on Systems 
(Research ques.on 2) ............................................................................................................... 30 

4.2.1. Iden@fica@on of Condi@on Indicators ................................................................................................ 30 
4.2.2. Anomaly Detec@on ............................................................................................................................ 31 
4.2.3. Predic@ve Maintenance ..................................................................................................................... 31 

Chapter 5: Case Study for ICBBS Robust Digital Twin Modelling and Predic=ve Maintenance
 ........................................................................................................................................ 32 

5.1: Algorithm 1: DT model of ICBBS ......................................................................................... 33 
5.1.1. System Iden@fica@on ......................................................................................................................... 34 
5.1.2. Data Collec@on .................................................................................................................................. 34 
5.1.3. Ar@ficial Neural Network Architecture .............................................................................................. 34 
5.1.4. ANN Training, Valida@on, and Tes@ng ............................................................................................... 35 
5.1.5. Digital Twin Deployment ................................................................................................................... 36 



 6 

5.2: Algorithm 2 for Predic.ve Maintenance ............................................................................. 36 
5.2.1. Condi@on Indicator ............................................................................................................................ 36 
5.2.2. Anomaly Detec@on ............................................................................................................................ 36 
5.2.3. Predic@ve Maintenance ..................................................................................................................... 37 

Chapter 6: Results and Discussion .................................................................................... 38 

Chapter 7: Conclusion ...................................................................................................... 48 

Chapter 8:  Future Direc=on ............................................................................................. 50 

Publica=ons ..................................................................................................................... 51 

References ....................................................................................................................... 52 

Appendices ...................................................................................................................... 57 

Appendix A: Implementa.on Details ......................................................................................... 57 

Appendix B: PLC Programming and Data Recording ................................................................... 57 

Appendix C: Digital Twin Training .............................................................................................. 57 

Appendix D: Algorithm Valida.on Data ..................................................................................... 57 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 7 

Chapter 1 – Introduc1on 
 
This chapter serves as an introduc8on to the research project, which focuses on the u8liza8on 
of digital twin technology for predic8ve maintenance in industrial control systems. The 
chapter begins by exploring the significance of industrial control systems in the context of 
advanced manufacturing and Industry 4.0, highligh8ng their pivotal role in ensuring efficient 
and reliable opera8ons. Following this, the poten8al risks associated with industrial control 
system failures and their catastrophic and detrimental effects are examined, emphasizing the 
cri8cality of implemen8ng effec8ve maintenance strategies. Subsequently, various 
maintenance strategies employed in the industry to mi8gate the risks and ensure op8mal 
performance are discussed, providing a founda8on for the subsequent inves8ga8on. 
Addi8onally, the chapter delves into the concept of digital twins—a powerful technology 
enabling virtual representa8ons of physical systems—and its poten8al applica8ons in the 
realm of industrial control systems maintenance. Lastly, the research objec8ves guiding this 
study are presented, outlining the specific aims and areas of focus that address research gaps 
and contribute to the advancement of industrial control systems maintenance prac8ces. 
 
Industry 4.0, also known as the Fourth Industrial Revolu8on (IR 4.0), represents a paradigm 
shiS in manufacturing, driven by the integra8on of digital technologies into industrial 
processes [1]. IR 4.0 refers to the integra8on of physical components (such as machinery, 
devices, and sensors) and cyber components (including advanced soSware) through 
networks. This integra8on is driven by technology categories specific to Industry 4.0, which 
are u8lized for predic8on, control, maintenance, and process integra8on in the manufacturing 
[2].  IR 4.0 places a strong emphasis on the digitaliza8on of the manufacturing process, aiming 
to leverage technological advancements and digi8za8on to enhance and transform industrial 
opera8ons [3]. 
 
Industrial control system devices play a crucial role in promo8ng the digitaliza8on of 
manufacturing in IR 4.0[4]. These systems, with their ability to enhance flexibility and 
produc8vity, serve as a fundamental component in advanced manufacturing processes, 
thereby maintaining their essen8al role in the industrial opera8ons [5]. The industrial control 
systems employed encompass various devices such as programmable logic controllers and 
other control devices. These instrumental devices play a cri8cal role in ensuring the seamless 
opera8on of manufacturing processes and finding extensive applica8ons in assembly lines, 
produc8on lines, and robo8cs. They are adept at minimizing the disparity between desired 
and measured outcomes, contribu8ng to efficient and accurate manufacturing opera8ons [6]. 
Also, automa8on systems are extensively employed across a range of industries such as smart 
manufacturing, smart homes, automobile, aerospace, robo8cs, and healthcare. Some of these 
industries, for example, healthcare is highly sensi8ve. 
  
It is essen8al to acknowledge that while these systems bring numerous benefits, they are not 
immune to errors. Faults in the automa8on system used in sensi8ve industries can have severe 
consequences, including poten8ally fatal and catastrophic effects. These implica8ons highlight 
the cri8cal importance of ensuring the reliability and robustness of the system [7].  Academic 
experts and industry prac88oners believe that in order to meet the future demand in the 
manufacturing process, automa8on systems should be improved [8].  Therefore, it is vital to 
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have an approach that can be used to avoid failures of control and automa8on systems to 
avoid catastrophic effects.  
 
Effec8ve condi8on monitoring plays a pivotal role in ensuring seamless advanced 
manufacturing opera8ons. Maintenance costs, which can account for a substan8al por8on 
ranging from 15% to 60% of total manufacturing expenses, underscore the importance of well-
planned maintenance strategies [9]. Inefficient maintenance prac8ces can result in a 
significant reduc8on of up to 20% in an organiza8on's manufacturing capability [10]. 
Moreover, inadequate condi8on monitoring of equipment poses substan8al risks to 
manufacturing workers, with more than 30% of reported fatali8es in manufacturing 
environments linked to maintenance-related ac8vi8es [11]. 
 

 
Fig. 2. Different maintenance approaches [ Ref: MATLAB- 

h>ps://au.mathworks.com/discovery/predicFve-maintenance-matlab.html] 
 
Conven8onal condi8on monitoring methods offer reac8ve and preventa8ve maintenance 
approaches but come with their own limita8ons, including higher maintenance costs, 
increased down8me, and the need for larger spare parts inventory and assets as can be seen 
in Fig. 2. Predic8ve maintenance, on the other hand, overcomes these challenges by providing 
con8nuous predic8ons regarding asset failure, thus offering a more proac8ve and efficient 
maintenance approach. Predic8ve maintenance has gained significant importance within the 
context of IR 4.0. It involves the analysis of data to iden8fy and detect anomalies within a 
system [12]. Anomaly detec8on pertains to the task of iden8fying paVerns within data that 
deviate from the an8cipated or normal behaviour [13]. By proac8vely iden8fying these 
irregulari8es, organiza8ons can take 8mely ac8on to prevent asset failure and op8mize 
maintenance opera8ons [12]. By detec8ng machine failures in advance, pre-emp8ve 
maintenance and repairs can be carried out more efficiently, leading to a reduc8on in 
produc8on costs [14]. These anomalies can be 8mely detected by using the Digital Twin 
technology [13].  
 
The concept, known as Digital Twin (DT) has also gained significant importance in the context 
of IR 4.0 due to the increasing significance of digitaliza8on in the manufacturing process [15]. 
DT, as a digital replica of a physical system, effec8vely reflects the status and behaviour of the 
physical system within the cyber/digital domain [16]. The development of DT technology has 
generated substan8al interest from industry and academia alike in recent years [17]. The 
growing trend across various industries is the adop8on of DT, driven by the wave of digital 
transforma8on, as it proves instrumental not only during the phases of conceptualiza8on, 
prototyping, tes8ng, design, and op8miza8on but also throughout the en8re asset lifecycle 
[18]. DT surpasses tradi8onal computer-based analysis and simula8on by faithfully replica8ng 
the processes and dynamics of the physical domain within the virtual realm [19]. The adop8on 
of DT technology by NASA has enabled the emula8on of its flying vehicles' behaviour, leading 
to an unprecedented level of safety that would have been unaVainable with conven8onal 
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approaches[20]. The concept of DT has gained widespread acceptance across diverse 
industries, including manufacturing, aerospace, electric grids, healthcare, petroleum, and 
more[21]. As a powerful tool, DT holds immense poten8al in various industrial contexts, 
serving as a catalyst for prognos8c analysis, health management [22], predic8ve maintenance 
[13] and other cri8cal applica8ons.  
 
This research presents a comprehensive methodology for predic8ve maintenance in complex 
industrial control systems using Digital Twin (DT) technology. In the introduc8on, an overview 
of the significance and context of the study has been provided, highligh8ng the challenges 
and opportuni8es in the realm of predic8ve maintenance for industrial control systems. 
Building upon this founda8on, Sec8on 1.1 delves into the specific research objec8ves that 
guide this inves8ga8on. These research objec8ves have been formulated based on a thorough 
analysis of the exis8ng literature, industry needs, and the poten8al impact of digital twin 
technology in the field of predic8ve maintenance. By aligning the research objec8ves with the 
iden8fied gaps and the prac8cal demands of the industry, this study aims to address the 
pressing issues and contribute valuable insights to the advancement of industrial control 
systems maintenance prac8ces.  
 
1.1 Research Objec.ves  
 
The objec8ves of this research are to develop a robust predic8ve maintenance algorithm 
specifically tailored for industrial automa8on and control systems. The u8liza8on of DT 
technology was proposed to enable early detec8on of anomalies, thereby preven8ng the 
poten8ally catastrophic consequences of equipment failure. However, it was recognized that 
the mere detec8on of anomalies is insufficient. Therefore, a methodology was also sought to 
quan8fy the severity of an anomaly, facilita8ng appropriate ac8ons to be taken. For instance, 
in cases where minor anomalies are iden8fied in system performance, repairs or maintenance 
services can be ini8ated to mi8gate the risk of equipment failure. Conversely, a significant 
number of anomalies might indicate that a fault has already occurred, necessita8ng the 
replacement of the en8re system.  
 
However, the ini8al and fundamental step in this research was to thoroughly inves8gate and 
develop a methodology specifically designed for construc8ng a robust DT model of an 
industrial control system. This entailed addressing the challenges associated with modelling 
and understanding the internal workings of the system, which oSen lack transparency. By 
focusing on this crucial aspect, the aim was to establish a comprehensive and reliable 
framework for crea8ng a DT model that accurately represents the behaviour and dynamics of 
the industrial control system.  
 
The objec8ves of this research are detailed below.  
 
Research Objec3ve 1: Undertake a comprehensive inves3ga3on and devise an advanced 
methodology for construc3ng a highly robust and reliable DT model specifically tailored to 
the unique characteris3cs and complexi3es of an industrial control system. 
This objec8ve involves analysing exis8ng approaches and techniques for DT modelling, 
addressing challenges related to limited access to internal algorithms and poten8al data 
limita8ons, and exploring advanced modelling techniques such as physics-based and data-
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driven approaches. The ul8mate goal is to establish a methodology that ensures an accurate 
and effec8ve representa8on of the system in the DT for enhanced predic8ve maintenance 
capabili8es. 
 
Research Objec3ve 2: Develop and implement a predic3ve maintenance algorithm u3lizing 
DT technology for industrial automa3on and control systems. This algorithm will enable the 
early detec3on and iden3fica3on of anomalies, facilita3ng 3mely interven3ons and 
maintenance ac3ons to ensure the performance and reliability of the systems. 
By analysing data from the DT, the algorithm will enable proac8ve iden8fica8on of poten8al 
issues or devia8ons from normal behaviour, allowing for 8mely interven8ons and 
maintenance ac8ons. The algorithm aims to op8mize the maintenance strategy, minimize 
down8me, and enhance the overall performance and reliability of the industrial automa8on 
and control systems. 
 
Research Objec3ve 3: Examine and validate the proposed methodology in Research 
Objec3ve 2 to quan3fy anomaly severity and enhance false posi3ve mi3ga3on in industrial 
automa3on and control systems. 
To thoroughly examine and validate the proposed methodology outlined in Research 
Objec8ve 2, focusing on its ability not only to detect anomalies but also to quan8fy the 
severity of anomalies and effec8vely address the challenge of false posi8ve mi8ga8on within 
industrial automa8on and control systems. This examina8on aims to ensure the robustness 
and reliability of the methodology in providing comprehensive anomaly detec8on, severity 
assessment, and false posi8ve mi8ga8on capabili8es. 
 
Research Objec3ve 4: Inves3gate state-of-the-art machine learning, deep learning, and 
sta3s3cal approaches to assess their ability to detect anomalies in unseen data paQerns, 
dis3nct from the data on which these approaches were trained and evaluate their 
performance in terms of mi3ga3ng false posi3ves.  
 
This objec8ve aims to explore state-of-the-art techniques in machine learning, deep learning, 
and sta8s8cal analysis to assess their capability to mi8gate false posi8ves in anomaly 
detec8on algorithms. The objec8ve involves a comprehensive examina8on of advanced 
architectures, novel algorithms, and established methodologies, all aimed at improving the 
algorithms' capacity to mi8gate false posi8ves and accurately differen8ate between healthy 
and faulty opera8ons under various opera8ng condi8ons. 
 
The research objec8ves defined earlier establish a clear focus on leveraging digital twin 
technology for predic8ve maintenance in industrial control systems. To accomplish these 
objec8ves, it is impera8ve to examine the exis8ng body of literature in this domain. The 
subsequent chapter will further explore the exis8ng literature, providing a comprehensive 
theore8cal framework to support and inform the achievement of these research objec8ves.  
 
The remainder of the thesis structure is as follows. Chapter 2 provides a detailed explora8on 
of the methods employed in the industry for both digital twin implementa8on and predic8ve 
maintenance. It examines the current prac8ces, techniques, and challenges associated with 
these areas, offering a comprehensive overview of the exis8ng landscape. In Chapter 3, state- 
of-the-Art anomaly detec8on approaches are used to detect anomalies in real-8me sensor 
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data. Chapter 4 introduces the methodology for developing a robust DT model and predic8ve 
maintenance algorithm, leveraging Ar8ficial Intelligence techniques. The effec8veness of the 
proposed methodology is then validated through a detailed case study in Chapter 5, which 
involves the applica8on of the methodology on a real industrial control system. Chapter 6 
presents the results and discussions derived from the case study, providing insights into the 
performance and capabili8es of the methodology. Finally, Chapter 7 offers a conclusion 
summarizing the key findings, contribu8ons, and implica8ons of the study. Future direc8ons 
are discussed in Chapter 8.  
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Chapter 2: Literature Review 
 
The literature review presented in this chapter offers a broad explora8on of the current state 
of research and prac8ces in the field of digital twin technology for predic8ve maintenance in 
control systems. The review encompasses several crucial areas of inves8ga8on, including the 
challenges, research gaps, and related work associated with digital twin implementa8on. 
Addi8onally, it delves into various modelling approaches u8lized in digital twin development, 
with a specific focus on paVern recogni8on state-of-the-art approaches. Furthermore, the 
review encompasses an analysis of maintenance strategies employed in industry seqngs to 
address maintenance-related challenges. By synthesizing the wealth of exis8ng knowledge, 
this literature review serves as a founda8on for iden8fying areas where further research is 
warranted. Finally, in alignment with the review findings, the chapter concludes with a 
presenta8on of the research ques8ons that will guide the subsequent inves8ga8on. 
 
2.1 Related Work, Challenges and Contribu.on  
Crea8ng a high-fidelity DT model of a physical system within a cyber-domain can present 
challenges [23]. However, robust DT modelling can be achieved through the applica8on of 
physics-based and data-driven approaches. The physics-based approach, widely employed by 
the engineering community across various industries, is the predominant method for DT 
modelling [24]. SoSware tools such as MATLAB, ADAMS, and COMSOL are commonly u8lized 
for physics-based approaches [25]. It is important to have enough reliable data for the 
effec8ve implementa8on of the physics-based approach, as corrupt data can lead to the 
underperformance of the DT model [17].  
 
2.1.1: Digital Twin for Industrial Control System (ICBBS)  
While researchers have extensively explored the concept of digital twins for mul8ple control 
applica8ons, it is noteworthy that the predominant emphasis has been on a physics-based 
approach. For instance, in [25], a comprehensive architecture for feedback infrared 
temperature uniformity control was proposed, while [26]  presented a DT framework for 
distributed control systems. [27]  discussed the analy8cal design of op8mal frac8onal order 
PID control for industrial robots based on DT. Addi8onally, [28] introduced a self-op8mizing 
control approach that combines DT, intelligence, and deriva8ve-free op8miza8on. The virtual 
modelling of physical systems within the cyber domain has been accomplished using soSware 
tools like MATLAB, Unity 3D, and others in these studies. However, employing a tradi8onal 
physics-based approach for virtual modelling of industrial control systems used in advanced 
manufacturing poses significant challenges, as the internal algorithms may be unknown, and 
data sets may be unavailable, rendering these systems as black boxes.   
 
A 'black box' refers to a system or device whose internal workings and processes are not 
readily accessible or understood. Instead, the system's behaviour and func8onality are 
assessed solely by examining the inputs it receives and the outputs it generates. In essence, it 
operates as an opaque en8ty where the inner mechanisms, algorithms, and processes remain 
concealed. For example, an industrial control system in a manufacturing facility. This system 
may regulate various processes, such as temperature control, produc8on line speed, or 
material handling. While the system's inputs, such as sensor data, control signals, and 
operator commands, are well-documented, the intricate details of how these inputs are 
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processed and translated into ac8ons are not visible or easily decipherable. Therefore, a 'black 
box' system is characterized by the necessity to infer its behaviour solely from the observable 
inputs and outputs, without access to the underlying internal processes. This concept is 
essen8al in scenarios where understanding the inner workings of the system is not the 
primary focus, but rather assessing its performance and func8onality in prac8cal applica8ons. 
 
In this work, black-box systems applied to industrial control are referred to as Industrial 
Control Black Box System (ICBBS). These ICBBS represent a unique and cri8cal component 
within industrial control systems due to their inherent complexity. While there are exis8ng 
black box systems based on machine learning in research, this study has iden8fied a notable 
gap in the development of a framework specifically for construc8ng a DT model of the ICBBS. 
For example, in [29], a DT architecture was presented for a power electronic converter, 
trea8ng the simula8on model as a black box. However, this research relied on simula8on data 
for valida8on and focused on a different applica8on domain than industrial control systems. 
Consequently, formula8ng a comprehensive and systema8c methodology for construc8ng a 
digital twin model of an ICBBS that addresses the specific requirements of industrial control 
systems remains a challenging task.  
 
2.1.2 Digital Twin Based Anomaly Detec@on 
 
In [30], the authors introduce an innova8ve approach termed 'end-to-end anomaly detec8on' 
designed to iden8fy real-8me anomalies using Digital Twin (DT) technology. This method relies 
on aVen8on mechanisms and mul8dimensional deconvolu8onal networks to discern crucial 
features during the anomaly detec8on process. Nevertheless, it's worth no8ng that the study 
lacks an in-depth explora8on of the specific hardware configura8ons within the Industrial 
Control Systems (ICS) u8lized for their case study. Such details hold significant importance in 
research since the complexity of the hardware environment can substan8ally impact the 
efficacy of the proposed methodology. Furthermore, the valida8on of the methodology's 
effec8veness appears to lack transparency regarding the data paVerns used for evalua8on. 
 
In [13], researchers present an approach for detec8ng anomalies in real-world scenarios 
employing DT technology. This study introduces two dis8nct methodologies: a clustering-
based method referred to as 'cluster centres' (CC) and a neural architecture based on the 
Siamese Autoencoder (SAE). To construct the Digital Twin, a physics-based approach was 
employed, integra8ng tools like the Greencity library and Simula8on X for simula8on 
purposes. However, it's essen8al to recognize that these approaches may face considerable 
challenges when applied to complex systems like Industrial Control Systems (ICS), where 
internal system details are oSen limited, resul8ng in 'black-box' characteris8cs. Addi8onally, 
the reliance on physics-based informa8on necessitates an abundance of data sheets for the 
virtual modelling of the DT, which may not always be readily accessible for ICS within 
manufacturing environments. 
 
2.1.3 Anomaly Detec@on Using Conven@onal Approaches 
In the study conducted by [31], the authors introduced the fault-aVen8on genera8ve 
probabilis8c adversarial autoencoder (FGPAA) approach for anomaly detec8on. FGPAA is 
designed to automa8cally iden8fy low-dimensional structures within high-dimensional signal 
data, effec8vely reducing informa8on loss during feature extrac8on. Addi8onally, in the 
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research outlined in [32], a hybrid Nonlinear Mul8mode Framework was employed. This 
strategy combines techniques such as the Dirichlet process Gaussian mixed model (DPGMM) 
for mode classifica8on and support vector data descrip8on (SVDD) to construct monitoring 
sta8s8cs for fault detec8on without prior knowledge. In [33] , the proposed Op8mal Window-
Symbolic Time Series Analysis (OW-STSA) methodology aims to op8mize feature extrac8on 
and paVern classifica8on in industrial processes. The focus is on dis8nguishing between 
normal and anomalous opera8ons by segmen8ng 8me series into op8mized windows, 
compu8ng sta8onary state probability vectors for anomaly predic8on, and determining locally 
op8mal accuracy for detec8on. Subsequently, [34] introduced the one-class support Tucker 
machine (OCSTuM) and the OCSTuM based on tensor tucker factoriza8on and a gene8c 
algorithm (GA-OCSTuM). These novel methods were developed for unsupervised anomaly 
detec8on in large-scale Internet of Things (IoT) sensor data. Leveraging tensor 
representa8ons, these approaches retain structural informa8on within the data, leading to 
improved accuracy and efficiency in outlier detec8on compared to tradi8onal vector-based 
methods. Furthermore, in [35], the authors presented the smoothness-inducing sequen8al 
varia8onal auto-encoder (SISVAE) model, designed for robust es8ma8on and anomaly 
detec8on in mul8dimensional 8me series. This model u8lizes flexible neural networks to 
capture temporal structures and applies a smoothness-inducing prior. 
 
However, it's important to note a common limita8on in these approaches, including 
Varia8onal Autoencoders (VAE) and Genera8ve Adversarial Networks (GAN). They oSen 
exhibit subop8mal decision criteria as their primary objec8ve func8ons are designed for tasks 
other than anomaly detec8on, such as generic summariza8on, data synthesis, or sequence 
predic8on [36]. 
 
Finally, [37] proposes an integrated deep genera8ve model known as AMBi-GAN for industrial 
8me-series anomaly detec8on. This approach u8lizes bidirec8onal LSTM networks with an 
aVen8on mechanism to capture 8me-series dependencies and features. However, based on 
the informa8on available in the paper, it remains unclear whether the data used in the study 
is specifically derived from an industrial system. The paper men8ons three datasets, including 
Yahoo, social media 8me-series plus (SMTP), and an ac8vity recogni8on system based on 
mul8-sensor data fusion (AReM). While the AReM dataset appears to involve sensor data 
related to various human ac8vi8es, such as standing, siqng, bending, cycling, etc., there is no 
explicit men8on of industrial system data. Therefore, the effec8veness of this approach on 
real-8me industrial 8me-series data, especially data with noise, remains uncertain. 
 
It is clear from the exis8ng review that the proposed approaches have limita8ons. Therefore, 
a novel approach is needed that can be used to not only detect anomalies but it can also 
quan8fy the level of anomalies and mi8gate false posi8ves for the smooth opera8on and 
condi8on monitoring of industrial control systems.  
 
2.2: Data-Driven Model 
 
ASer extensive research and inves8ga8on, it has been determined that ar8ficial neural 
networks (ANNs), drawing inspira8on from the biological neural network in the human brain, 
offer a promising data-driven approach. ANNs have emerged as a powerful tool for modelling 
black box systems due to their ability to learn intricate rela8onships between inputs and 
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outputs, capture non-linear dependencies, and exhibit robustness to noise. As a result, ANNs 
have gained significant trac8on in the industry for addressing paVern recogni8on challenges 
[38]. 
 
2.2.1 ANN 
ANNs have become increasingly appealing, effec8ve, efficient, and successful in achieving 
paVern recogni8on (PR) in numerous problem domains[39]. Unlike conven8onal paVern 
approaches, ar8ficial neural networks (ANNs) have the inherent capability to effec8vely model 
complex or mul8-complex tasks with rela8ve ease [40]. The preceding conven8onal 
methodologies employed for addressing PR issues can be categorized into structural, 
sta8s8cal, and hybrid methodologies[38]. However, both the sta8s8cal and structural 
approaches may not provide sa8sfactory results when applied as solu8ons to complex PR 
problems alone. For example, the structural method may be weak in handling noise paVerns 
and ineffec8ve in addressing challenges related to the numerical seman8c informa8on [38]. 
Similarly, the sta8s8cal method lacks the capability to u8lize informa8on pertaining to paVern 
structures. Consequently, the integra8on of both approaches has garnered research interest, 
leading to the development of a hybrid approach. However, in contemporary 8mes, Ar8ficial 
Neural Network (ANN) models are increasingly employed due to their ability to yield superior 
outcomes in PR problems, including those involving mul8ple complex tasks [38]. 
 
2.2.2ANN PaHern Recogni@on  
A paVern can be defined as a collec8on of items, objects, images, events, cases, situa8ons, 
features, or abstrac8ons in which elements within the set share common characteris8cs in a 
dis8nct manner. Whereas Norbert Wiener provided a defini8on of a paVern as an 
arrangement based on the sequence of its cons8tuent features, Watanabe offered an 
alternate perspec8ve by defining a paVern as "an en8ty" [41].  
ANNs in paVern recogni8on (PR) leverage insights from human brain processing. They are 
well-suited for iden8fying paVerns and employ large networks of nonlinear and 
straighRorward units known as neural nets. PR tasks are accomplished using feedforward 
networks (FFNNs) that process data in a forward direc8on [42, 43]. 
 
2.2.3 Types of ANN 
There are various types of ANNs. Among them, the two major networks are Convolu8onal 
Neural Networks(CNNs), Feedforward Neural Networks and Recurrent Neural Networks 
[RNNs] [44]. CNNs are a specialized type of neural network architecture designed to effec8vely 
process and analyse visual data, making them highly suitable for tasks such as image 
classifica8on, and image recogni8on [45]. A feedforward neural network is a type of ar8ficial 
neural network where informa8on flows in a single direc8on, from the input layer to the 
output layer. It consists of mul8ple layers of interconnected nodes, or neurons, where each 
neuron in a given layer is connected to every neuron in the subsequent layer [46]. For 
regression, RNNs are highly efficient [47].  
 
2.2.3.1 Recurrent Neural Network (RNN) 
Most of the sensor data are in 8me series. RNN-based models have shown significant progress 
in various 8me series forecas8ng tasks, which are essen8al in industrial and business decision 
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processes [48]. Also, the majority of the real-world systems u8lized in industry exhibit dynamic 
characteris8cs [49].  
 
It is important to note that to model the dynamic behaviour of the physical system in the 
virtual world, the neural network should also be dynamic in the nature [29]. One suitable 
op8on for modelling dynamic systems is a recurrent neural network (RNN) [50]. RNNs are 
par8cularly well-suited for sequen8al and 8me series data [49]  and have demonstrated state-
of-the-art performance in these domains [51].   
 
The NARX (nonlinear autoregressive network with exogenous inputs) is a type of recurrent 
dynamic network that incorporates feedback connec8ons and mul8ple layers. This neural 
network, known as NARX, is well-suited for forecas8ng nonlinear 8me series data [52, 53]. 
 
Unlike feedforward neural networks (FNN), NARX incorporates internal states and can perform 
backpropaga8on, enabling them to effec8vely model dynamic systems. In contrast, FNNs lack 
the backpropaga8on op8on and can only predict output based on the present input value, 
making them unsuitable for dynamic system modelling [29].  
 
2.2.3.2 NARX Basics 
 
The NARX model, as a discrete-8me nonlinear system, can be represented mathema8cally as 
[54]: 
 

y(n + 1) = f[y(n); u(n)] (1) 
 
In this representa8on, y(n) and u(n) denote the output and input regressors, respec8vely. The 
mapping func8on f(·) is typically unknown and requires approxima8on. 
 

 
 

Fig. 3. illustrates the configura8on of a NARX [54] 
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The meanings of the symbols used in Fig. 3 can be found in Table 1.  
 

Table 1: Symbols [53] 

 
 
Fig. 4 displays the two training modes available for a NARX neural network. 
 

1. Parallel (P) mode: In this mode, the es8mated outputs are fed back and incorporated 
into the regressor of the output. The equa8on for es8ma8ng the next output value is 
represented as [54] 

ˆy(n + 1) = ˆ f[ˆy(n), . . . , ˆy(n − dy + 1); u(n), u(n − 1), . . . , u(n − du + 1)] 
 
Here, the hat symbol (ˆ) signifies es8mated values or func8ons. 

2. Series-parallel (SP) mode: In this mode, the regressor for the output is constructed 
solely using the actual values of the system's output. The equa8on for es8ma8ng the 
next output value is represented as [54] 

 
ˆy(n + 1) = ˆ f[y(n), . . . , y(n − dy + 1); u(n), u(n − 1), . . . , u(n − du + 1)] 

 
Here, the hat symbol (ˆ) denotes es8mated values or func8ons. 
 
Both structures can be u8lized for network training, depending on the availability of data. The 
appropriate structure should be selected based on the data characteris8cs. For example, if the 
actual system output is obtainable for training, the series-parallel architecture is preferred. 
This architecture incorporates the real output data instead of the es8mated output from the 
NARX [55]. U8lizing actual data enhances the accuracy of input data during training, leading 
to improved network performance [55]. 
 
Following the iden8fica8on and training of the suitable neural network for the Digital Twin 
(DT) model, the subsequent task involves exploring and determining the appropriate 
maintenance strategy for efficient condi8on monitoring. This crucial step aims to select the 
op8mal approach that allows the DT model to effec8vely monitor the system's condi8on. By 
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choosing the right maintenance strategy, the DT model can proac8vely detect and address 
poten8al issues, leading to enhanced opera8onal efficiency and minimized down8me. 
 

 
Fig. 4. NARX architectures [54] 

 
2.3 Maintenance Evolu.on  
 
There are mul8ple maintenance methods available, each with its own trade-off between 
complexity and costs. Below are the three most important maintenance methods used within 
the industry, including: 
 

1. Reac8ve maintenance: This method involves performing maintenance ac8vi8es only 
when a component breaks down. It is commonly employed for components with low 
cost and minimal risk of hazardous situa8ons. Reac8ve maintenance can lead to 
unscheduled machine down8me and is considered the most expensive maintenance 
approach. It also carries a high risk of catastrophic failures affec8ng the en8re machine 
[56]. 

 
2. Preven8ve maintenance: Preven8ve maintenance involves conduc8ng maintenance 

ac8vi8es at predetermined intervals. In this approach, the expected life8me of each 
component is assessed, and maintenance is performed before the component is likely 
to fail. Preven8ve maintenance enables businesses to schedule maintenance ac8vi8es 
and minimize machine down8me. However, this method can result in the 
underu8liza8on of components [56], as there is a tendency to over-maintain machines 
for safety and service maintenance, which can be costly [57]. 

 
3. Predic8ve Maintenance: Predic8ve maintenance (PM) is a novel approach in the 

manufacturing industry that focuses on detec8ng signs of machine degrada8on before 
failures happen. It plays a significant role in the vision of Industry 4.0 and smart 
manufacturing. By u8lizing sensor readings, process parameters, and opera8onal 
characteris8cs, PM aims to op8mize tool lifespan by minimizing unnecessary repairs 
and decreasing the occurrence of unexpected failures. Detec8ng machine failures in 
advance can lead to more efficient maintenance and repairs, resul8ng in reduced 
produc8on costs[14]. Predic8ve maintenance involves detec8ng early anomalies or 
devia8ons in the system's behaviour or performance to prevent asset failure. By 
monitoring and analysing various data sources such as sensor readings, equipment 
parameters, and opera8onal paVerns, predic8ve maintenance aims to iden8fy 
poten8al issues and take proac8ve measures before they lead to the system or asset 
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failure[13]. Iden8fying abnormal behaviours in data centres is vital for the purposes of 
predic8ve maintenance and safeguarding data integrity [58]. 
 
 

2.3.1 Anomaly Detec@on  
The anomaly detec8on [59] involves iden8fying paVerns in data that deviate from expected 
or normal behaviour. It is a highly researched field with diverse applica8ons, including the 
energy [60], manufacturing [61], network sensors [62], health care, and video surveillance 
[63]. The goal is to detect and flag instances that differ significantly from the norm, allowing 
for early iden8fica8on of poten8al issues or threats. 
 
Anomaly detec8on techniques that rely on machine learning can be categorized into various 
approaches. These approaches include: 
 

1. Supervised Approaches: These methods require a sufficiently large set of training 
samples with labelled data. The training data consists of both normal and anomalous 
instances, allowing the model to learn the paVerns and characteris8cs of anomalies 
[64]. 

 
2. Unsupervised Approaches: In this type of approach, only unlabelled measurement 

data is available. The model learns the normal behaviour from the data and then 
iden8fies instances that deviate significantly from this learned behaviour as anomalies. 
Unsupervised approaches do not rely on predefined anomaly labels [64]. 

 
3. Weakly Supervised Approaches: This approach u8lizes a large amount of unlabelled 

data along with a very small set of labelled data. The labelled data serves as weak 
supervision to guide the learning process. The model can leverage the small, labelled 
dataset to learn the characteris8cs of anomalies and generalize this knowledge to 
detect anomalies in the larger unlabelled dataset [64]. 
 
 

Each approach has its own strengths and limita8ons, and the choice of the most suitable 
approach depends on the availability of labelled data, the specific requirements of the 
applica8on, and the desired trade-off between detec8on accuracy and resource requirements 
[13]. 
 
ASer an in-depth review of the relevant literature, a set of challenging ques8ons has arisen, 
posing significant hurdles for the development and implementa8on of the digital twin model 
and predic8ve maintenance in control systems. These ques8ons highlight the complexi8es 
and intricacies involved in integra8ng digital twin technology and predic8ve maintenance 
techniques within control systems. By addressing these ques8ons head-on, this research aims 
to overcome these hurdles, explore effec8ve solu8ons, and pave the way for the successful 
deployment of digital twin models and predic8ve maintenance strategies in control systems. 
The ul8mate goal is to enhance the performance of control systems, enabling them to 
effec8vely facilitate advanced manufacturing processes while mi8ga8ng the poten8ally 
catastrophic and fatal consequences of system failures.  
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2.4 Research Ques.ons  
 
ASer an extensive review of the relevant literature, this research will address the following 
ques8ons: 
 
Research ques3on 1: What approach can be employed to develop a robust Digital Twin for 
an industrial control black box system?  
This ques8on aims to iden8fy and outline a suitable methodology that ensures the crea8on 
of a reliable and accurate Digital Twin model for such systems. 
 
Research ques3on 2: What methodology should be adopted to develop a Predic3ve 
Maintenance algorithm specifically tailored for control and automa3on systems?  
This ques8on focuses on exploring and defining the appropriate steps and techniques 
necessary to design an effec8ve Predic8ve Maintenance algorithm catering to the unique 
requirements of control and automa8on systems. 
 
Research ques3on 3: How can the level of anomalies be quan3fied within the context of 
control and automa3on systems?  
This ques8on seeks to develop a quan8fiable measure or metric that can accurately assess 
and evaluate the severity or magnitude of anomalies occurring within these systems. 
 
Research ques3on 4: How can the generaliza3on capability of anomaly detec3on algorithms 
be enhanced to accurately classify and detect anomalies in unseen data paQerns in control 
and automa3on systems?  
This ques8on aims to explore techniques and approaches that improve the generaliza8on 
capability of anomaly detec8on algorithms, enabling them to effec8vely differen8ate between 
unseen healthy and faulty opera8ons in diverse opera8ng condi8ons. 
 
Addressing these research ques8ons will contribute to a beVer understanding of the 
methodology for developing a robust Digital Twin, the methodologies used in developing 
Predic8ve Maintenance algorithms for control and automa8on systems, and the 
quan8fica8on of anomalies within these systems. 
 
In this chapter, a comprehensive review of the exis8ng literature on digital twin technology 
for predic8ve maintenance in control systems has been presented. The review has shed light 
on the challenges, research gaps, related work, digital twin modelling approaches, paVern 
recogni8on techniques, and maintenance strategies employed in the industry. Drawing upon 
the insights gained from the literature review, the chapter concludes with the presenta8on of 
the research ques8ons that will drive the subsequent phase of this study. To address and 
answer these research ques8ons, the next chapter, 8tled 'State-of-the-Art Anomaly Detec8on 
Approaches,' will explore the latest advancements in anomaly detec8on techniques. 
Specifically, state-of-the-art approaches will be applied to real-8me sensor data, providing 
prac8cal insights into their effec8veness and applicability in the context of industrial control 
systems. 
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Chapter 3: State-of-the-Art Anomaly Detec1on Approaches  
 
This chapter focuses on evalua8ng the performance of state-of-the-art anomaly detec8on 
approaches within an industrial control system using real system data recorded during this 
research. The objec8ve is to assess their effec8veness in detec8ng anomalies, quan8fying 
their severity, and dis8nguishing between healthy and faulty opera8ons. The results 
presented in the tables and analysis are based solely on the data collected and analysed during 
this research effort, ensuring the relevance and applicability of the findings.  
 
The evaluated state-of-the-art anomaly detec8on approaches encompass machine learning 
algorithms such as Local Outlier Factor, One-Class Support Vector Machine, Isola8on Forest, 
and Robust Random Cut Forest. Addi8onally, a deep learning approach u8lizing an 
Autoencoder and a sta8s8cal approach employing the Mahalanobis Distance were also 
evaluated. The real-8me sensor data used in this study were exclusively recorded from the 
industrial control system during this research. The recorded data were used to train the state-
of-the-art models and the effec8veness of the trained models were validated against the 
dataset encompasses instances represen8ng healthy condi8ons, minor anomalies, severe 
anomalies, and system faults. 
 
By conduc8ng the evalua8on of the data recorded specifically for this research, any confusion 
or poten8al overlap with other datasets or experiments is eliminated, ensuring the integrity 
and validity of the results obtained.  
 
3.1. Anomaly Detec.on 
 
To compare the performance of the different approaches, several tables were created. Table 
2 presents a ranking of the approaches based on their effec8veness in detec8ng minor 
anomalies, severe anomalies, and system faults. These rankings were derived using data 
paVerns iden8cal to those used for training the algorithms. 
 

Table 2.  Anomaly Detec8on 
 

Training 
Method 

Algorithms Minor 
(1) 

Severe 
(1) 

Faulty 
(1) 

Total 
(3) 

Machine 
Learning 

Local Outlier Factor ü ü ü 3 

One Class Support 
Vector Machine ü ü ü 3 

IsolaFon Forest û û ü 1 
Robust Random Cut 
Forest û û û - 

Deep 
Learning Autoencoder ü ü ü 3 
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Sta8s8cal 
Approach 

Mahalanobis 
Distance ü ü ü 3 

 
3.2. Anomaly Severity Quan.fica.on  
 
Table 3 showcases the effec8veness of the approaches in quan8fying the severity of 
anomalies. The severity quan8fica8on is crucial in enabling industries to make informed 
decisions based on the observed anomaly severity. For minor anomalies, all evaluated 
approaches accurately quan8fy the severity, indica8ng the presence of noise or minor 
devia8ons from normal opera8on. However, in cases where the number of observed 
anomalies is significantly high, the approaches accurately capture the severity, signalling large-
scale disrup8ons or system malfunc8ons. This feature allows decision-makers to priori8ze 
ac8ons based on the level of risk associated with the observed anomalies. 
 

Table 3.  Anomaly Severity Quan8fica8on 
 

Training 
Method 

Algorithms Minor 
(1) 

Severe 
(1) 

Faulty 
(1) 

Total 
(Out of 3) 

Machine  
Learning 

Local Outlier Factor ü ü ü 3 

One Class Support 
Vector Machine ü ü ü 3 

IsolaFon Forest û û ü 1 

Robust Random 
Cut Forest û û û - 

Deep 
Learning Autoencoder ü ü ü 3 

Sta8s8cal 
Approach 

Mahalanobis 
Distance ü ü ü 3 

 
3.3. Detected Anomaly Loca.on in Data 
 
Table 4 illustrates how effec8vely the approaches detect anomaly points and their respec8ve 
loca8ons within the data. This informa8on is valuable as it provides insights into the nature 
and specific loca8ons of anomalies. For example, if anomalies are observed only during the 
high-speed opera8on of a rota8ng shaS, it may suggest specific issues related to that 
par8cular condi8on.  
The total score was calculated by addi8on of the % of minor, severe and faulty data. For 
example Local outlier factor detected 90% (0.9) for minor, 76.19% (0.76) for severe and 
68.12% (0.68) for faulty which gave it a total score of 2.34 (0.90+0.76+0.68= 2.34).  
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Table 4.  Detected Anomaly Points and Loca8on 
Training  
Method Algorithms Minor 

(11s) 
Severe 
(21s) 

Faulty 
(66s) 

Total 
(Out of3) 

Machine 
Learning 

Local Outlier Factor 10s 
(90%) 

16s 
(76.19%) 

45s 
(68.18%) 2.34 

One Class Support 
Vector Machine 

2s 
(18%) 

3s 
(14.28%) 

33s 
(50%) 0.82 

IsolaFon Forest - - 9s 
(13.63%) 0.13 

Robust Random Cut 
Forest - - - - 

Deep 
Learning Autoencoder - - - - 

Sta8s8cal 
Approach 

Mahalanobis 
Distance 

10s 
(90%) 

16s 
(76.19%) 

52s 
(78.78%) 2.44 

 
3.4. Performance Comparison 
 
Table 5 presents the overall scores and rankings given to the approaches, providing a 
comprehensive assessment of their performance. The scores are based on a combina8on of 
detec8on accuracy, severity quan8fica8on, and anomaly point iden8fica8on. 
 

Table 5. Results 
Training 
Method 

Algorithm Anomaly 
Detec3on  
(3) 

Quan3fica3on 
(3) 

Point 
Iden3fica3on 
(3) 

Total   
(Out of 9) 

 
 
 
Machine 
Learning 

Local Outlier 
Factor 3 3 2.34 8.34 

One Class 
Support Vector 
Machine 

3 3 0.82 6.82 

IsolaFon Forest 1 1 0.13 2.13 

Robust Random 
Cut Forest 

- - - 0 

Deep 
Learning Autoencoder 3 3 - 6 
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Sta8s8cal 
Approach 

Mahalanobis 
Distance 3 3 2.44 8.44 

 
3.5. Challenges and Limita.ons with Generaliza.on 
 
False posi8ve mi8ga8on plays a crucial role in anomaly detec8on as it refers to the ability of 
an algorithm to reduce false alarms and accurately classify anomalies in unseen data paVerns. 
In other words, a false posi8ve mi8ga8on approach should not only work well on the data it 
was trained on but also on new, previously unseen data. Achieving strong false posi8ve 
mi8ga8on is vital for real-world applica8ons where industrial systems encounter different 
opera8ng condi8ons and exhibit diverse paVerns over 8me. Anomaly detec8on algorithms 
with robust false posi8ve mi8ga8on capabili8es can adapt to novel scenarios and minimize 
the occurrence of false alarms, even when faced with data paVerns that differ from the 
training set.  
 
However, Table 6 reveals a significant limita8on of the evaluated approaches. They struggled 
to differen8ate between unseen healthy and faulty opera8ons. Even when provided with 
unseen healthy input, all evaluated approaches misclassified it as severe anomalies in the 
system. This indicates that the approaches are limited to working only on seen data, posing a 
challenge as industrial systems encounter different tasks daily with varying outputs. 
 

Table 6.  Unseen Healthy Data PaVern vs Anomaly Classifica8on 
 

Training 
Method Algorithms Healthy Minor Severe Faulty 

Machine 
Learning 

Local Outlier Factor    ü 
One Class Support 
Vector Machine   ü  

IsolaFon Forest   ü  

Robust Random Cut 
Forest - - - - 

Deep 
Learning Autoencoder    ü 

Sta8s8cal 
Approach Mahalanobis Distance    ü 

 
 
This chapter concludes that while the evaluated state-of-the-art anomaly detec8on 
approaches demonstrated effec8veness in detec8ng anomalies, quan8fying their severity, 
and iden8fying anomaly points, they encountered difficul8es in dis8nguishing between 
unseen healthy and faulty opera8ons. The sta8s8cal approach u8lizing Mahalanobis Distance 
exhibited remarkable performance, outclassing other machine learning and deep learning 
approaches. However, challenges remain in effec8vely addressing the false posi8ve issue. 
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Future research and advancements are necessary to develop approaches that can robustly 
detect and classify anomalies in unseen data paVerns, enabling proac8ve maintenance and 
improved decision-making in industrial control systems. 
 
Chapter 6 offers a comprehensive explana8on of the tes8ng methodology employed, along 
with a detailed breakdown of the scores provided in tables 2, 3, 4, 5, and 6. That chapter is a 
valuable resource for readers seeking in-depth informa8on on the evalua8on process. 
 
The next Chapter presents a methodology that not only addresses the limita8ons of black box 
system digital twin modelling but also introduces an algorithm capable of detec8ng 
anomalies, quan8fying their levels, and effec8vely classifying between healthy and anomaly 
data in industrial control systems. This methodology aims to provide a comprehensive solu8on 
by combining insights from data-driven modelling, anomaly detec8on, severity quan8fica8on, 
and false posi8ve mi8ga8on.  
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Chapter 4: Methodology 
 
In response to the research ques8ons outlined in Chapter 2, and the limita8ons iden8fied in 
Chapter 3, Chapter 4 delves into the development of two innova8ve algorithms that address 
the challenges iden8fied in the literature review. The first algorithm leverages the power of 
ar8ficial neural networks to construct a high-fidelity digital twin model for control systems. By 
employing advanced modelling techniques based on ar8ficial neural networks, this algorithm 
aims to accurately capture the complex dynamics and behaviour of control systems. Building 
upon the outcomes of the first algorithm, the second algorithm presents a comprehensive 
methodology for predic8ve maintenance, u8lizing the insights derived from the developed 
digital twin model. These innova8ve and novel algorithms represent a significant contribu8on 
to the field of industrial control and automa8on by providing prac8cal solu8ons to the 
iden8fied challenges. 
   
4.1: Algorithm 1: Digital Twin of ICBBS (Research Ques.on 1) 
 
For a robust and high-fidelity deep learning model of an Industrial Control Black Box System 
(ICBBS), the five-step framework (Fig. 5) is proposed in this research that includes system 
iden8fica8on, data collec8on, network architecture, ANN training, valida8on and tes8ng, and 
digital twin deployment.  The u8liza8on of ar8ficial neural networks (ANNs) has been selected 
as a machine learning approach to effec8vely acquire paVerns and predict the behaviour of 
industrial control systems opera8ng as black box systems. ANNs are a potent tool for 
modelling black box systems due to their capability to comprehend complex rela8onships 
between input and output variables, capture non-linear associa8ons, and exhibit noise 
tolerance. Consequently, ANNs have gained widespread acceptance and have been 
extensively adopted in the industry to address challenges related to paVern recogni8on. 
Aligned with this no8on, the current study harnesses the power of ANNs to uncover intricate 
paVerns and forecast the complex behaviour of ICBBS. 
 

 
 

Fig. 5. ICBBS DT Algorithm  
 
4.1.1. System Iden@fica@on 
The accurate selec8on of a suitable neural network for a system is con8ngent upon a thorough 
understanding of the system's inherent characteris8cs. This understanding involves precisely 
iden8fying whether the system exhibits linearity or nonlinearity and whether it possesses 
sta8c or dynamic proper8es. Two valuable principles, the Law of Addi8vity and the Law of 
Homogeneity, aid in discerning the system's nature [65]. The Law of Addi8vity states that the 
system's response to a combina8on of inputs is equivalent to the sum of its responses to each 
individual input. Meanwhile, the Law of Homogeneity dictates that scaling the input will result 
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in a propor8onal scaling of the output response. These principles are applied by u8lizing input 
and output data obtained directly from the system. 
 
To effec8vely employ these principles, it is essen8al to have access to an adequate amount of 
input and output data from the system. The availability of such data sets becomes impera8ve 
for facilita8ng the training, valida8on, and tes8ng procedures of the neural network. A 
sufficient volume of training data enables the network to learn and adapt to the system's 
characteris8cs, resul8ng in more accurate predic8ons and improved performance. Therefore, 
the precise iden8fica8on of the system's inherent characteris8cs, supported by the Law of 
Addi8vity and the Law of Homogeneity, along with the availability of ample training data, are 
crucial factors in the accurate selec8on and successful training of an appropriate neural 
network for the system. 
 
The applica8on of the Laws of Homogeneity and Addi8vity to the recorded data in the 
experiment is thoroughly explained in Chapter 5, specifically in Sec8on 5.1.1.  
 
4.1.2. Data Collec@on 
Prior to ini8a8ng data recording, it is vital to emphasize the significance of ensuring the 
system's reliability. This precau8onary measure is crucial as the u8liza8on of flawed or 
unreliable data during the training phase can severely impact the accuracy of predic8ons 
generated by the network. Consequently, these inaccuracies can render the predic8ve 
maintenance algorithm unsuitable for facilita8ng effec8ve decision-making processes. 
 
To address this concern, it is highly recommended to undertake a comprehensive examina8on 
of relevant documents associated with maintenance, troubleshoo8ng, and service records. 
This examina8on serves to obtain a holis8c understanding of the system's present condi8on 
and performance. By me8culously reviewing these documents, valuable insights can be 
gained regarding the system's historical behaviour, past maintenance prac8ces, iden8fied 
issues, and overall opera8onal health. 
 
The insights derived from this thorough examina8on of documents significantly contribute to 
the overall reliability and accuracy of the predic8ve maintenance algorithm. This, in turn, 
enhances its efficacy in providing reliable predic8ons and facilita8ng informed decision-
making processes. Therefore, the diligent examina8on of per8nent documents plays a cri8cal 
role in ensuring the integrity and effec8veness of the predic8ve maintenance approach. 
 
The specifics of the data collec8on process, encompassing data sources, sensor u8liza8on, 
and acquisi8on procedures, have been extensively detailed in Chapter 5 (Case Study) of the 
thesis.  
 
4.1.3. Architecture of Ar@ficial Neural Networks 
 
The selec8on of an appropriate neural network is of utmost importance when it comes to 
accurately predic8ng the behaviour of a black box system. It plays a pivotal role in ensuring 
that the neural network aligns well with the specific characteris8cs and demands of the 
system under inves8ga8on. This selec8on process involves careful considera8on of various 
factors and the iden8fica8on of whether the system is sta8c or dynamic [29]. 
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When dealing with a sta8c system, it is recommended to opt for a sta8c neural network that 
can effec8vely capture and model the system's behaviour. On the other hand, for dynamic 
systems that exhibit 8me-varying or evolving proper8es, a dynamic neural network is more 
suitable. This choice allows for the incorpora8on of temporal dependencies and enables the 
network to adapt and respond to changing system dynamics. 
In addi8on to selec8ng the appropriate neural network type, me8culous aVen8on should be 
given to the selec8on of hyperparameters, which significantly influence the network's 
performance. These hyperparameters encompass various aspects of the network's 
architecture and configura8on. Some key hyperparameters include [44]: 
 

• The total number of layers in the network 
• The number of hidden layers 
• The number of neurons within each layer 
• The number of feedback delays 
• The number of input delays 

 
One crucial hyperparameter to consider is the total number of layers in the network. The 
depth of the network plays a vital role in its capacity to learn complex representa8ons and 
capture intricate rela8onships within the data. Another considera8on is the number of hidden 
layers, which determines the level of abstrac8on and hierarchical processing in the network. 
The total number of layers in the network encompasses all layers, including input, hidden, and 
output layers. On the other hand, the number of hidden layers specifically refers to the layers 
between the input and output layers, where the actual processing and feature extrac8on 
occur. Furthermore, the number of neurons within each layer is an essen8al hyperparameter 
that affects the network's representa8onal power and capacity to model complex func8ons. 
The choice of the number of feedback delays and input delays is also cri8cal, especially when 
dealing with systems that exhibit memory or temporal dependencies. 
 
Careful selec8on of these hyperparameters is essen8al to avoid two common piRalls: 
overfiqng and underfiqng. Overfiqng occurs when the network becomes overly complex 
and starts to memorize the training data instead of learning general paVerns. Conversely, 
underfiqng happens when the network is too simple and fails to capture the complexity of 
the underlying system. To ensure op8mal performance and minimize the risks of overfiqng 
or underfiqng, it is crucial to tune and select the hyperparameters carefully. This process 
oSen involves conduc8ng systema8c experiments, exploring different configura8ons, and 
leveraging techniques like cross-valida8on to evaluate the network's performance on unseen 
data. By choosing the right neural network type, determining the appropriate number of 
layers, neurons, and delays, and diligently fine-tuning the hyperparameters, the network's 
accuracy, performance, and generaliza8on capabili8es can be enhanced. This comprehensive 
approach leads to a more reliable and effec8ve predic8ve maintenance algorithm for control 
and automa8on systems, facilita8ng 8mely and proac8ve decision-making. 
 
4.1.4. Training, Valida@on, and Tes@ng of ANN 
 
In the training phase of neural networks, various training algorithms can be employed to 
op8mize the network's performance. Examples of these algorithms include Levenberg-
Marquardt Backpropaga8on, Scaled Conjugate Gradient, and Bayesian Regulariza8on, among 
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others. Each algorithm has its strengths and limita8ons, and the choice of algorithm depends 
on the specific problem and dataset [44]. 
 
Once the neural network training is completed, it is crucial to assess its performance using 
appropriate performance metrics. Mean Square Error (MSE), Sum Square Error (SSE), and 
Mean Absolute Error (MAE) are commonly used metrics to measure the network's accuracy 
and devia8on from the desired outputs. These metrics provide quan8ta8ve measures of the 
network's performance, allowing for comparisons and analysis [44]. 
 
To ensure reliable evalua8on, it is important to use separate data for valida8on and tes8ng. 
The training data should not be reused for these purposes to avoid bias and overfiqng. 
Instead, new data specifically collected for valida8on and tes8ng should be u8lized. This 
approach provides a realis8c assessment of the network's ability to generalize to unseen data 
and ensures that the network's performance is not solely op8mized for the training dataset 
[44]. 
 
By par88oning the data into dis8nct groups—training, valida8on, and tes8ng sets—it 
becomes possible to assess the network's generaliza8on capability accurately. This data 
par88oning helps in iden8fying poten8al issues such as overfiqng, where the network may 
perform well on the training data but fails to generalize to new data. By evalua8ng the 
network's performance on unseen data, it becomes easier to fine-tune the model, adjust 
hyperparameters, and improve its overall performance and accuracy. 
 
4.1.5. Deployment of Digital Twin 
 
Once the neural network exhibits sa8sfactory performance across the training, valida8on, and 
tes8ng datasets, it signifies a significant milestone in deploying the Digital Twin as a virtual 
model of the Industrial Control Black Box System (ICBBS). This virtual model accurately mirrors 
the intricate behaviour and performance of the physical system, providing valuable insights 
and support for various applica8ons. 
 
However, if the network falls short of mee8ng the desired performance standards, it is 
important to take proac8ve steps to improve its capabili8es. This involves an itera8ve process 
of refining the network architecture and enriching the training data to enhance its 
performance and ensure its accuracy in represen8ng the ICBBS. 
 
Refining the network architecture entails carefully adjus8ng its structure to beVer capture the 
complexity of the system. This includes making changes to the number of layers, neurons per 
layer, and ac8va8on func8ons to op8mize the network's ability to learn and understand the 
underlying paVerns and dynamics. These adjustments are like fine-tuning an instrument, 
ensuring that the network is finely calibrated to accurately replicate the behaviour of the 
ICBBS. 
 
In addi8on to architectural adjustments, enriching the training data becomes crucial in further 
improving the network's performance. By gathering addi8onal data that represents a wide 
range of opera8ng condi8ons and scenarios, the network can beVer understand the nuances 
of the system and make more accurate predic8ons. 
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Through this itera8ve process of refining the network architecture and gathering more diverse 
training data, the performance of the neural network can be con8nuously enhanced. This 
approach not only addresses ini8al limita8ons but also allows the Digital Twin to evolve and 
adapt alongside the physical system. The resul8ng Digital Twin becomes a powerful tool for 
analysing and op8mizing the ICBBS, enabling beVer decision-making, proac8ve maintenance, 
and improved efficiency. By con8nuously fine-tuning the network architecture and expanding 
the dataset, the Digital Twin becomes a reliable asset for industrial control and automa8on 
systems. It helps minimize down8me, maximize system performance, and ensure the smooth 
opera8on of the ICBBS. 
 
 
Once the digital twin reaches a state of readiness for deployment, the subsequent phase 
involves the development of a robust predic8ve maintenance algorithm. 
 
4.2: Algorithm 2: Predic.ve Maintenance Algorithm for Control and Automa.on 
Systems (Research ques.on 2) 
 
During the development of Algorithm 1, significant progress has been made with the 
comple8on of the ini8al steps. Now, let's move on to Steps 3, 4, and 5, which are vital in the 
process as can be seen in Fig. 6. These steps focus on iden8fying an appropriate condi8on 
indicator, detec8ng anomalies, and raising an alarm for predic8ve maintenance in the 
Industrial Automa8on and Control System. 
 

 
Fig. 6. Predic8ve Maintenance Algorithm 

 
 
4.2.1. Iden@fica@on of Condi@on Indicators 
 
During the phase of iden8fying condi8on indicators, the primary objec8ve was to select 
suitable metrics that play a crucial role in dis8nguishing between healthy and faulty data 
within the Industrial Automa8on System. The careful selec8on of condi8on indicators is 
essen8al as they directly impact the accuracy of decision-making processes. Several condi8on 
indicators were considered for this purpose: 
 

1. Mean Square Error (MSE) 
2. Mean Absolute Error (MAE) 
3. Standard Devia8on 

 
By u8lizing these iden8fied condi8on indicators, thresholds can be established to effec8vely 
detect anomalies within the system. These indicators serve as valuable tools for assessing and 
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monitoring the system's performance and iden8fying any devia8ons from expected 
behaviour. The implementa8on of appropriate thresholds based on these condi8on indicators 
enables 8mely detec8on and interven8on for abnormal paVerns or outliers in the Industrial 
Automa8on System. This proac8ve approach to anomaly detec8on contributes to the 
robustness and reliability of the system, allowing for effec8ve decision-making and preven8ve 
maintenance to ensure op8mal system performance. 
 
4.2.2. Anomaly Detec@on 
 
To detect anomalies in the physical system, a compara8ve analysis should be performed 
between the physical system and the Digital Twin. This involved providing iden8cal inputs to 
both the physical system and the Digital Twin. The outputs from the physical system should 
be recorded and compared with the outputs of the Digital Twin, u8lizing the previously 
iden8fied condi8on indicators from Step 4.2.1, along with their respec8ve thresholds. 
By evalua8ng the performance of the physical system against the threshold determined by 
the condi8on indicator, any instances where the performance of the physical system exceeds 
the threshold are flagged as alerts. These alerts indicate poten8al anomalies or devia8ons 
from the expected behaviour of the system, allowing for 8mely interven8on or further 
inves8ga8on to ensure the system's op8mal func8oning and reliability. 
 
4.2.3. Predic@ve Maintenance 
 
Anomalies detected in the system can be aVributed to various factors such as environmental 
changes, temperature fluctua8ons, equipment aging, or faults. Addressing these anomalies 
promptly is crucial to prevent equipment failures, as such failures can disrupt advanced 
manufacturing opera8ons and pose safety risks to workers and operators. To ensure the 8mely 
iden8fica8on and resolu8on of faults, a fault-finding analysis should be conducted when the 
performance of the physical system exceeds the safety threshold. This analysis aims to 
determine the underlying cause of the anomaly and take appropriate measures to rec8fy the 
issue. By addressing faults promptly, the risk of equipment failure is mi8gated, ensuring the 
efficiency and safety of the overall industrial processes. Implemen8ng a predic8ve 
maintenance approach, supported by anomaly detec8on, enables proac8ve maintenance 
ac8ons to be taken based on the detected anomalies. By iden8fying and addressing poten8al 
issues before they escalate, the system's reliability and up8me are improved, leading to 
enhanced produc8vity and cost savings. Addi8onally, predic8ve maintenance helps in 
extending the lifespan of cri8cal equipment and op8mizing maintenance schedules, thereby 
minimizing down8me and maximizing opera8onal efficiency.  
 
 
In this chapter, two methodologies are presented to address the research objec8ves outlined 
in Chapter 2. The first methodology focuses on the development of a high-fidelity digital twin 
model, aiming to accurately represent the complex dynamics of control systems. The second 
methodology centres on predic8ve maintenance techniques, leveraging the insights provided 
by the digital twin model to enable proac8ve maintenance strategies. The next chapter will 
further illustrate the prac8cal applica8on of these methodologies through a comprehensive 
case study. This case study aims to provide empirical evidence and validate the effec8veness 
of the proposed methodologies in a real-world seqng. 
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Chapter 5: Case Study for ICBBS Robust Digital Twin Modelling and 
Predic1ve Maintenance  

 
In this chapter, a comprehensive case study is presented to demonstrate the prac8cal 
applica8on and effec8veness of the methodologies introduced in Chapter 4. Building upon 
the methodologies developed in the previous chapter, this case study serves as a real-world 
valida8on of the proposed approaches for high-fidelity digital twin modelling and predic8ve 
maintenance in control systems. By applying the methodologies to an actual industrial 
scenario, this research aims to provide empirical evidence of their performance, reliability, 
and impact on control systems maintenance. 
 
The proposed frameworks in this chapter were validated using an industrial control system 
(Fig. 7) comprising specific hardware and soSware components. The central component of the 
control system was an Omron programmable logic controller (PLC), which played a crucial role 
in managing and controlling a 240-volt industrial DC motor. The PLC acted as the brain of the 
system, execu8ng programmed instruc8ons, and coordina8ng various tasks to ensure smooth 
motor opera8on. 
 

 
Fig. 7. Industrial Control System   

 
To monitor the real-8me performance of the motor and record data, an Omron incremental 
encoder sensor was employed. This sensor provided precise feedback on the motor's posi8on, 
speed, and rota8onal direc8on, enabling accurate monitoring and analysis of its behaviour 
during opera8on. For effec8ve motor control, including synchroniza8on and precise 
posi8oning, the control system u8lized the Omron MX2 inverter. This inverter served as a 
power conversion device, allowing efficient control of the motor's speed and torque output. 
Its integra8on within the system ensured op8mal motor performance for diverse industrial 
applica8ons. 
 
To facilitate machine automa8on control, PLC programming, configura8on, and simula8on, 
the control system relied on the Omron Sysmac Studio soSware. This comprehensive soSware 
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package offered a user-friendly interface and a range of powerful tools for developing and 
managing automa8on programs. It allowed engineers to create and op8mize control logic, 
simulate system behaviour, and configure the PLC to suit specific applica8on requirements. 
The soSware was executed on an Intel Core i5 Lenovo computer running on the Windows 10 
opera8ng system. In addi8on to the industrial control system, the experiment also involved 
the u8liza8on of an Apple device with a 7-core CPU equipped with the M1 chip for Digital Twin 
execu8on and MATLAB deep learning opera8ons. This Apple device provided the necessary 
computa8onal power and capabili8es to carry out sophis8cated simula8ons, data analysis, 
and deep learning tasks related to the Digital Twin implementa8on. 
 
For more comprehensive informa8on about the hardware components used in the 
experiment, Table 7 can be referred to, which outlines the specific details of each component. 
Similarly, Table 8 provides detailed informa8on about the soSware employed, allowing for a 
comprehensive understanding of the system's technological infrastructure. 
 

Table 7. System hardware 
Hardware  Descrip-on 
Omron programmable logic 
controller  

NJ 101-1000: complete integra@on of 
logic sequence and mo@on 

Omron inverter 3G3AX-MX2-ECT 

Omron incremental encoder E6C3-C 
Omron industrial slim relay G2RV-SL700 
Industrial motor DC 240 volts, 50 Hz 

Intel Corei5, Windows 10 

Apple 7 core CPU with M1 chip 
 
 

Table 8. SoSware used for predic8ve maintenance algorithm 
So1ware’s Descrip-on 

SYSMAC STUDIO PLC programming, motor control and 
to read encoder feedback signal 

MATLAB Digital Twin training and execu@on 
 

 
5.1: Algorithm 1: DT model of ICBBS 
The 5-step algorithm includes system iden8fica8on, data collec8on, ar8ficial neural network 
architecture, DT training, valida8on and tes8ng and DT deployment, which is based on the 
methodology presented in Chapter 4. 
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5.1.1. System Iden@fica@on 
 
In the context of system iden8fica8on, two fundamental principles, the Law of Addi8vity and 
the Law of Homogeneity, were applied to assess the system's linearity and behaviour. 
Addi8vity (Superposi8on) is a property where the output should be the sum of the responses 
generated by each input signal individually. In other words, if the system exhibited 
superposi8on, it indicated linearity. However, during the experimenta8on, the system's 
behaviour did not adhere to the principle of superposi8on, as the output responses were not 
a simple linear summa8on of the individual input responses. 
 
Homogeneity (Scaling) involves scaling the input signals by a constant factor (scalar) to 
observe its effect on the system's output. For a linear system, a propor8onal change in the 
input should result in a propor8onal change in the output. The observed behaviour of the 
system revealed a lack of homogeneity, as changes in the input signal amplitude did not result 
in a consistent linear scaling of the output. 
 
Based on these assessments, it was determined that the system did not follow the principles 
of superposi8on and homogeneity. As a result, the system was classified as a non-linear 
system, reflec8ng its complex behaviour in response to input changes. 
 
5.1.2. Data Collec@on 
 
In this phase, OMRON Sensors played a pivotal role in acquiring essen8al data. The recorded 
data primarily consisted of Pulse Width Modula8on (PWM) frequency signals, providing 
precise insights into the system's behaviour. The collected data sets exhibited a wide-ranging 
diversity, encompassing various scenarios, including healthy data sets, data featuring minor 
anomalies, instances with severe anomalies, and data reflec8ng faulty condi8ons. This 
comprehensive array of data was instrumental in several aspects, serving as valuable input for 
the training of ar8ficial neural networks and facilita8ng rigorous valida8on procedures for the 
proposed algorithms. The details of the number of data sets have been highlighted in Table 
8A.  
 

Table 8A. Data set details 
ICS condi3on Number of data sets 

Healthy opera8on 3 
Minor anomalies 1 
Severe anomalies 1 
Faulty opera8on 1 

 
 
5.1.3. Ar@ficial Neural Network Architecture 
 
Recurrent Neural Network (NARX) was employed in this research to effec8vely capture the 
intricate behaviour of the ICBBS. To mi8gate the risk of overfiqng, the network architecture 
was inten8onally kept simple, taking into considera8on the limited variability observed in the 
data recorded during step A. The inclusion of a complex structure with small variables could 
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have resulted in overfiqng, nega8vely impac8ng the network's performance. Several 
combina8ons of hyperparameters were systema8cally tested and validated against the 
recorded data. The selected hyperparameters, as presented in Table 9, consistently yielded 
the most op8mal results in terms of model performance and generaliza8on.  
 
 
 
 

Table 9. Hyperparameters for neural network 
Hyperparameter type Numbers 
Number of layers 3 
Number of hidden layers 1 
Neurons in each layer 10 
Number of input delay 1:2 
Number of feedback delay 1:2 

 
It is important to note that in scenarios where the recorded data exhibits greater complexity 
or a higher degree of variability, the addi8on of extra layers and neurons to the network may 
be necessary. This flexibility allows for adjus8ng the network's capacity to effec8vely handle 
more intricate paVerns and capture the full range of system behaviours. 
 
5.1.4. ANN Training, Valida@on, and Tes@ng 
 
In this research, the network was trained using an open-loop architecture, since real system 
data was available for training. To facilitate the training, valida8on, and tes8ng processes, the 
available data was divided into three subsets, as detailed in Table 10. The training of the model 
was conducted using the Levenberg-Marquart Backpropaga8on (LMB) training algorithm. This 
algorithm incorporates Levenberg-Marquart op8miza8on techniques to update the weight 
and bias values of the network. Specifically, the algorithm u8lizes the Jacobian for calcula8ons, 
considering the performance metric, which is typically represented as a sum or mean of 
squared error. 
 
 

Table 10. Data division for network development 
Phase Data % 
Training data set 70% 
Valida8on data set 15% 
Test data set 15% 

 
In this research, the Mean Square Error (MSE) was chosen as the performance metric for the 
LMB algorithm, following the default implementa8on provided by MATLAB. It is important to 
highlight that separate datasets were used for valida8on and tes8ng, ensuring independent 
evalua8ons of the trained network's performance. At the 18th epoch, the network 
demonstrated sa8sfactory performance with an MSE of 2.1. This value indicates the average 
squared difference between the predicted output and the actual output of the network. The 
low MSE suggests that the network was able to accurately approximate the behaviour of the 
system based on the available training data. 
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Furthermore, it is worth no8ng that for mul8-step ahead predic8on, a parallel configura8on 
is highly recommended. This recommenda8on arises from the series-parallel architecture's 
tendency to generate errors primarily in one-step predic8on scenarios [44]. By adop8ng a 
parallel configura8on, the network can beVer handle mul8-step predic8ons and minimize the 
accumula8on of errors over 8me. Overall, the training process u8lized the LMB algorithm with 
MSE as the performance metric, resul8ng in sa8sfactory network performance. The adop8on 
of an open-loop architecture and the appropriate configura8on for mul8-step ahead 
predic8on contributed to the accurate approxima8on of the system's behaviour. 
 
5.1.5. Digital Twin Deployment 
The performance of the developed Digital Twin was assessed by comparing its output with 
the output of the ICBBS. The obtained results demonstrate that the developed Digital Twin 
exhibited effec8ve tracking of the ICBBS's response, par8cularly during dynamic states. With 
its demonstrated performance closely mirroring that of its physical counterpart, the Digital 
Twin was ready to be deployed, offering a robust solu8on for op8mizing opera8ons and 
ensuring efficient system performance. 
 
5.2: Algorithm 2 for Predic.ve Maintenance  
 
Once the suitable condi8on indicator has been iden8fied, the developed Digital Twin from 
the previous step can be effec8vely u8lized to detect anomalies. 
 
5.2.1. Condi@on Indicator 
 
In this study, the Levenberg-Marquart backpropaga8on (LMB) algorithm was employed to 
train the neural network, and the mean squared error (MSE) was selected as the condi8on 
indicator. ASer the network was trained, its performance was evaluated using unseen data 
during the valida8on phase. The valida8on error, measured as MSE, was found to be 2.1. This 
validated MSE value of 2.1 was established as the threshold alert for detec8ng anomalies in 
subsequent opera8ons. If the performance of the system surpasses this threshold, it serves 
as an indica8on of poten8al anomalies or devia8ons from the expected behaviour. This 
threshold can be used to trigger appropriate ac8ons for further analysis or interven8on, 
ensuring proac8ve maintenance and op8miza8on of the industrial processes. 
 
5.2.2. Anomaly Detec@on 
 
To evaluate the effec8veness of the condi8on indicator in detec8ng anomalies within the 
automa8on system, addi8onal experiments were conducted. These experiments involved 
collec8ng new data sets from the automa8on system under both healthy and faulty 
condi8ons, u8lizing an encoder to record the input and corresponding output in the form of 
PWM frequency. The Digital Twin, developed using algorithm 1 and opera8ng in a closed-loop 
configura8on using a parallel architecture was used to simulate the automa8on system's 
behaviour. The response of the Digital Twin was analysed under different condi8ons, 
specifically in a healthy state and in a faulty state.  It was found that the developed Digital 
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Twin model was very effec8vely able to detect anomalies and dis8nguish between healthy 
and abnormal opera8ons.  
 
5.2.3. Predic@ve Maintenance 
The successful detec8on of anomalies as discussed in the previous sec8on using the proposed 
algorithm underscores its robust applicability for predic8ve maintenance in industrial control 
systems. By effec8vely iden8fying devia8ons from expected behaviour, the algorithm 
empowers maintenance personnel with 8mely and ac8onable insights to address poten8al 
issues proac8vely, minimizing down8me, op8mizing system performance, and ul8mately 
enhancing the overall reliability and efficiency of industrial control systems. 
 
This chapter presented a case study where the two algorithms proposed in Chapter 4 
underwent rigorous valida8on using real-8me sensor data. In the following chapter, the 
discussion will centre on the results obtained during the training of the Digital Twin model, 
the proposed algorithm's capacity to detect anomalies, quan8fy anomaly severity and address 
the challenge of false posi8ves. Addi8onally, the chapter will provide an overarching analysis 
of the en8re research, including the ranking of state-of-the-art approaches. 
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Chapter 6: Results and Discussion 
 
In the following chapter, a comprehensive analysis and discussion of the obtained results from 
the case study conducted in Chapter 5 will be presented. The case study serves as a cri8cal 
evalua8on of the methodologies proposed in Chapter 4, which aimed to leverage digital twin 
technology for predic8ve maintenance in control systems. This analysis will provide insights 
into the effec8veness and prac8cal implica8ons of the proposed methodologies. To provide a 
contextual framework, this chapter will also provide a compara8ve analysis of the state-of-
the-art approaches discussed in Chapter 3. This analysis will highlight the advantages and 
limita8ons of these exis8ng approaches, laying the founda8on for understanding the 
innova8on and contribu8on of the proposed methodologies. 
 
Evalua8ng the performance of a trained neural network is a crucial step in the analysis. The 
training record of the network, depicted in Fig. 8, illustrates the rela8onship between errors 
and epochs. Notably, at 18 epochs, the network demonstrated strong performance, achieving 
the lowest valida8on error of 2.15. This indicates that the network successfully learned and 
generalized the data. It is common for the error to decrease further with addi8onal training 
epochs. However, cau8on must be exercised as an overfiVed network may exhibit an increase 
in valida8on error. 

 
Fig. 8. ANN Performance Matrix 

 
To further assess the performance of the trained network, it is advisable to generate and 
examine a regression plot. Fig. 9 presents the regression plot, which depicts the correla8on 
between the network output and targets. The plot consists of four dis8nct sec8ons 
represen8ng this rela8onship during training, valida8on, tes8ng, and the combined data from 
all three sets. Analysing the regression plot can provide insights into the accuracy and 
consistency of the network's predic8ons across different datasets. In each of the plots, the 
targets are represented by a dashed line, while the solid line represents the best-fit linear 
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regression line that describes the rela8onship between the network output and the targets. 
The inclusion of R-values in the plots provides an indica8on of the strength of this rela8onship. 
An R-value of 1 suggests a perfect linear rela8onship, while an R-value of 0 indicates no linear 
rela8onship. In Fig. 9, the R-values for all plots are nearly equal to 1, indica8ng a highly 
accurate fit between the network output and the target values. This suggests that the network 
has effec8vely captured the underlying paVerns and trends in the data. 
 

 
Fig. 9. Regression Plot 

 
Fig. 10 provides a 8me series response that highlights the selected 8me points for training, 
valida8on, and tes8ng. It also presents the error ploVed against 8me, offering insights into the 
performance of the network over the dura8on of the experiment.  
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Fig. 10. Time Series Plot 

 
Addi8onally, Fig. 11 displays a histogram of the error values, with 20 bins, allowing for a visual 
representa8on of the distribu8on of errors in the network's predic8ons. 
 
 

 
Fig. 11. Error Histogram 

 
the input error correla8on, illustra8ng the rela8onship between errors and the input 
sequence can be seen in Fig. 12. The plot provides valuable insights into the performance of 
the trained network. It is evident from the graph that the network was effec8vely trained, as 
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Fig. 12. Input Error Correla8on  

most of the correla8ons between errors and the input sequence lie within the confidence 
limit. This indicates that the network has successfully captured and learned the paVerns and 
dependencies present in the input data.  Fig. 13 provides a visual representa8on of the training 
states of the network. This plot showcases the progression and evolu8on of the network's 
performance throughout the training process. By observing the plot, one can gain insights into 
how the network's accuracy and error rates change over 8me, allowing for an assessment of 
the network's learning dynamics and convergence. 
 
 

 
 

Fig. 13. Training states 
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The autocorrela8on plot in Fig. 14 demonstrates the 8me-related predic8on error. The trained 
model exhibited excellent performance, as most of the error correla8ons are within the 
confidence limit and exhibit independence from each other. The deployment of the Digital 
Twin (DT) network against the physical system is depicted in Fig. 15. This figure showcases the 
ability of the network to accurately track the performance of the physical system, par8cularly 
in dynamic states.  
 

 
 

Fig. 14. Autocorrela8on of Error 
  
In the assessment of state-of-the-art anomaly detec8on methods for real-world scenarios, 
various machine learning, deep learning and sta8s8cal approaches were evaluated. These 
methodologies underwent training using a specific data paVern, as illustrated in Fig. 15. To 
assess the effec8veness, diverse datasets were employed, including one with minor anomalies 
(Fig. 16), another with severe anomalies (Fig. 17), and one with instances of faulty opera8on 
(Fig. 18). Importantly, all four data sets shared a common input paVern, enabling assessment 
of their performance on data with similar characteris8cs.  
 
All these approaches were implemented using MATLAB’s built-in models, with a link to the 
deployment provided in the appendix. Among these methods, the Mahalanobis Distance 
method demonstrated excep8onal performance, achieving the highest score of 8.44 out of 9. 
It not only adeptly detected anomalies but also quan8fied their severity and precisely 
iden8fied their loca8ons in the data. This makes it an excellent choice for detec8ng anomalies 
resembling those in the training data. Following closely, the Local Outlier Factor approach 
achieved a score of 8.34. It effec8vely detected and quan8fied anomalies, showing accuracy 
in iden8fying anomaly points for both minor and severe cases. However, it had limita8ons in 
detec8ng a few anomaly points within faulty data, placing it in the second posi8on.  
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The One-Class Support Vector Machine approach earned a score of 6.82 and secured the third 
rank. While it successfully detected and quan8fied anomalies, it struggled to iden8fy specific 
anomaly points within the data. Consequently, its suitability may be restricted in scenarios 
where precise anomaly point iden8fica8on is crucial for root cause analysis. The Autoencoder, 
a deep learning approach, received a score of 4. While it proficiently detected and quan8fied 
anomalies, its limita8on in pinpoin8ng individual anomaly points significantly limits its 
applicability. This drawback underscores that the Autoencoder is best suited for scenarios 
requiring anomaly detec8on and quan8fica8on but falls short in iden8fying specific anomaly 
loca8ons.  
 
The Isola8on Forest algorithm, ranking fiSh with a score of 2.13, demonstrated limited 
effec8veness in detec8ng minor and severe anomalies. It also lacked the capability to quan8fy 
anomaly severity in these scenarios. Nevertheless, the algorithm exhibited some proficiency 
in iden8fying anomalies within faulty data, making it more suitable for reac8ve maintenance 
rather than predic8ve maintenance scenarios. Robust Random Cut Forest received a score of 
0 due to its inability to detect any anomaly points within the research dataset, despite using 
advanced models in MATLAB. These rankings provide a clear comparison of the most effec8ve 
methodologies, aiding manufacturing industries in informed decision-making regarding the 
adop8on of suitable anomaly detec8on approaches tailored to specific industrial needs. 
 
However, a significant challenge arose when applying these approaches to unseen healthy 
data paVerns (Fig. 19). Notably, a high Mean Squared Error (MSE) was observed, signifying the 
misclassifica8on of new, unseen healthy data as anomalies and faulty instances. This indicates 
that these evaluated approaches struggled to dis8nguish between normal and faulty 
opera8ons, resul8ng in a substan8al number of false posi8ves. Consequently, these 
limita8ons render them unsuitable for opera8ons involving systems and devices opera8ng on 
diverse paVerns, especially in advanced manufacturing environments. 
 

 
Fig. 15. ICS healthy opera8on data  
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Furthermore, the first Digital Twin model deployment was made against the healthy output 
of the ICS as can be seen in Fig. 19. The recorded MSE was 2.0 which was taken as a condi8on 
indicator to locate anomalies in new unseen data. It's crucial to note that the training data 
used for the DT was en8rely dis8nct from the data encompassing healthy instances, minor 
anomalies, severe anomalies, and faulty opera8ons. With 780 instances, the training data 
exhibited unique paVerns compared to those shown in other figures. When the system 
experienced a minor anomaly, as depicted in Fig. 16, the detected error was 2.4 (0.3 above 
the threshold). This demonstrates the effec8veness of the proposed algorithm in detec8ng 
anomalies in dis8nct paVerns.  
 

 

 
Fig. 16. ICS opera8on with minor anomaly instances  

 

 
Fig. 17. ICS opera8on with the severe anomaly instances 
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Fig. 18. ICS under fault  

 

 
Fig. 19. ICS addi8onal healthy data 

 
 
 
To further evaluate the DT’s ability to quan8fy the level of anomaly, its performance was 
compared when the system encountered severe anomalies as can be seen in Fig. 17 and faulty 
condi8ons in Fig. 18. The MSE observed for severe anomalies was 3.4 (1.3 above the 
threshold), while for faulty condi8ons, it was 5.4 (3.3 above the threshold). These results 
clearly indicate that the proposed algorithm not only detected anomalies but also accurately 
quan8fied their severity. To further assess the DT’s capability in mi8ga8ng false posi8ves, 
addi8onal healthy data were used (Fig. 15). The observed MSE was 2.1 which clearly did not 
cross the iden8fied alert threshold as well.  
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Fig. 20. DT Anomaly Detec8on, Quan8fica8on, and False Posi8ve Mi8ga8on 
 
 
Notably, despite the significant differences in training paVerns and instances, the proposed 
algorithm outperformed state-of-the-art approaches with 100 % accuracy in anomaly 
detec8on, quan8fica8on, and mi8ga8on of false posi8ves on the recorded data as can be seen 
in Fig. 20. The trained digital twin exhibits a high level of accuracy, closely resembling the 
performance of its physical counterpart.  
 
It is also important to acknowledge that a slight devia8on in performance can be observed 
due to the presence of noise in the raw data recorded from the physical system. This noise 
makes it challenging to use the trained DT model to detect the loca8on of the anomaly points 
in the data. To further enhance the accuracy of the DT, incorpora8ng noise filtering techniques 
in real-world applica8ons within industries can be beneficial. By implemen8ng such 
techniques, the impact of noise on the performance of the DT can be mi8gated, enabling more 
precise iden8fica8on of anomaly points in the data.  Signal filtering techniques, such as low 
pass and high pass filters commonly used in signal processing, offer significant benefits. Low-
pass filters are effec8ve in aVenua8ng high-frequency noise, enabling the extrac8on of 
important low-frequency signals that reflect the system's behaviour. Conversely, high-pass 
filters eliminate low-frequency noise, enabling the iden8fica8on of rapid changes and 
transient phenomena. By carefully selec8ng and configuring these filters, the impact of noise 
on the digital twin's training data can be minimized. Another valuable tool for data refinement 
is the MATLAB smoothing toolbox, which provides various smoothing algorithms. For 
example, the moving average filtering computes the average of neighbouring data points, 
reducing high-frequency noise while preserving underlying trends. On the other hand, 
Savitzky-Golay filtering u8lizes polynomial regression to es8mate smooth curves from noisy 
data, effec8vely suppressing noise while retaining significant signal features.  The 
performance of the trained DT model on filtered data can be seen in Fig. 18. The orange line 
represents the output from the DT while the blue line represents the filtered output of the 
industrial control system using a low pass filter. It can be clearly seen that the performance 
accuracy of the trained DT has highly increased when compared with filtered data.  
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Fig. 18. Digital Twin trained on filtered data. 

 
Nevertheless, it is crucial to emphasize that the primary aim of this research was to develop 
and train the model on raw data, considering its prevalence and significance in industrial 
seqngs. Raw data serves as a valuable source of informa8on in various industries, providing 
insights into the behaviour and performance of physical systems. By focusing on raw data, this 
research aligns with real-world prac8ces and facilitates the direct applicability of the trained 
DT model within industry environments.  
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Chapter 7: Conclusion  
 
In conclusion, this research has highlighted the immense poten8al of industrial control 
systems (ICS) in the context of Industry 4.0 and advanced manufacturing. ICS play a pivotal 
role as key enablers, offering essen8al capabili8es such as data collec8on, automa8on, and 
analysis, which are crucial for improving product quality and op8mizing manufacturing 
processes. However, the challenge of control system failures poses significant risks, including 
poten8al catastrophic effects. The failure of a control system not only disrupts and slows down 
the advanced manufacturing process but can also result in a substan8al loss in overall 
produc8on and pose serious risks to the safety of the operators opera8ng the plant. The 
consequences of control system failures can range from financial setbacks due to down8me 
and produc8on losses to severe injuries or fatali8es for the operators. To address this 
challenge, the u8liza8on of digital twin technology for predic8ve maintenance algorithms in 
ICS emerges as a promising approach. By leveraging the power of digital twins, virtual replicas 
of physical systems, organiza8ons can proac8vely iden8fy and prevent anomalies, ensuring 
the smooth opera8on of control systems and minimizing the risks associated with failures. 
 
This research significantly contributes to the field by presen8ng innova8ve solu8ons and 
methodologies, which not only fill exis8ng research gaps but also pave the way for more 
comprehensive studies in the future. A notable contribu8on of this research is the 
development of a novel Digital Twin (DT) algorithm tailored explicitly for Industrial Control 
Black Box Systems (ICBBS). This pioneering approach fills a cri8cal void in the literature and 
lays a robust founda8on for future research endeavours in this specialized domain. In terms 
of algorithm novelty, this research introduces the use of the NARX model. Unlike previous 
studies that primarily relied on simula8on data for NARX with limited prac8cal applicability, 
this research me8culously adjusted hyperparameters and employed op8miza8on algorithms.  
 
Another dis8nct aspect of this research is its novel approach to data u8liza8on. Rather than 
relying on online data or data generated through simula8ons, this research u8lized six dis8nct 
real-world datasets. These datasets provide a comprehensive understanding of system 
behaviour over an en8re year, encompassing various seasons and scenarios. This data 
diversity is excep8onally rare in the exis8ng literature. Importantly, all experiments were 
conducted exclusively on raw data, emphasizing real-world applicability and data integrity.  
 
This research further extends its impact by addressing the scarcity of studies focused on 
quan8fying anomaly severity and effec8ve false-posi8ve mi8ga8on within ICS. Notably, a key 
novelty of this study is the u8liza8on of a novel case study for anomaly detec8on, 
quan8fica8on, and false-posi8ve mi8ga8on. The case study serves as a crucial component in 
evalua8ng the developed algorithms. It provides a real-world context and datasets that are 
oSen lacking in exis8ng research. This novel case study encompasses a wide range of real data 
sets, including healthy system states, minor anomalies, severe anomalies, and faulty data 
paVerns, making it an asset in enhancing the reliability of anomaly detec8on within the ICS 
domain.  
 
Another significant and pioneering contribu8on of this research is the comprehensive 
comparison of state-of-the-art algorithms. These approaches underwent rigorous assessment 
and valida8on against six real-world datasets, covering anomaly detec8on, quan8fica8on, and 
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real posi8ve mi8ga8on within ICS. Furthermore, this research introduced a novel ranking 
system to evaluate the performance of these approaches based on their applica8on to real-
world datasets. It's important to note that this research is ground-breaking in its scope and 
impact. No prior study has ventured into such a diverse range, u8lizing as many real-world 
datasets for performance assessment. This ground-breaking research significantly advances 
the state of the field. 
 
The proposed algorithm's performance was highly significant, achieving unparalleled accuracy 
and efficiency.  With the data set recorded from the industrial control system, the algorithms 
achieved 100% accuracy, not only detec8ng anomalies and quan8fying their severity but also 
demonstra8ng robust generaliza8on capabili8es by accurately classifying the system's 
condi8on as healthy or faulty, even on unseen data paVerns. This valida8on process involved 
comprehensive datasets recorded during different opera8onal scenarios, including periods 
when the system was in both healthy and faulty condi8ons. 
 
The importance of condi8on monitoring in the industry cannot be overstated. Poor 
monitoring prac8ces have been shown to contribute to dire consequences, with research 
indica8ng that approximately 30% of reported fatali8es in the manufacturing environment are 
directly related to inadequate condi8on monitoring. Moreover, equipment failures alone can 
account for up to 60% of total manufacturing costs for companies, highligh8ng the significant 
financial burden resul8ng from insufficient monitoring and maintenance prac8ces. While 
digital twin technology holds immense poten8al for improving condi8on monitoring, the 
challenge lies in the availability of comprehensive and high-quality data, which limits 
organiza8ons from fully capitalizing on its benefits.  
 
However, the algorithms proposed in this research address these challenges head-on. They 
not only tackle the data availability issue but also pave the way for organiza8ons to leverage 
the full poten8al of digital twin technology in condi8on monitoring. By implemen8ng these 
algorithms, organiza8ons will gain extraordinary advantages, including cost savings, enhanced 
worker safety, and the achievement of smooth advanced manufacturing processes. These 
algorithms provide a comprehensive and reliable solu8on, empowering organiza8ons to 
proac8vely monitor the health of their industrial control systems. They can be used to 
op8mize maintenance strategies, enable real-8me anomaly detec8on, prevent equipment 
failures, and safeguard the well-being of the workforce. This research demonstrates a 
noteworthy progression in condi8on monitoring, enabling organiza8ons to unlock substan8al 
opera8onal efficiencies and achieve superior performance in the realm of advanced 
manufacturing. 
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Chapter 8:  Future Direc1on 
 
Prescrip8ve maintenance represents a crucial advancement in maintenance strategies that 
build upon the founda8on of predic8ve maintenance. While both predic8ve and prescrip8ve 
maintenance play essen8al roles in op8mizing asset performance, they differ in their scope 
and approach. Predic8ve maintenance focuses on u8lizing historical data, advanced analy8cs, 
and machine learning algorithms to predict when equipment failures are likely to occur. By 
analysing paVerns and trends in data, predic8ve maintenance algorithms can iden8fy 
poten8al anomalies or devia8ons from normal behaviour, providing valuable insights into the 
health of assets. This enables organiza8ons to schedule maintenance ac8vi8es proac8vely, 
minimizing unexpected breakdowns and op8mizing maintenance resources. 
 
Prescrip8ve maintenance takes it a step further by providing specific recommenda8ons on 
how to prevent or address the predicted failures. It leverages real-8me data and advanced 
analy8cs techniques to con8nuously monitor asset performance and iden8fy poten8al issues. 
Based on this informa8on, prescrip8ve maintenance algorithms generate ac8onable 
recommenda8ons for maintenance ac8vi8es, guiding organiza8ons on the most effec8ve 
ac8ons to take. Despite the advancements in predic8ve maintenance, the explora8on of 
prescrip8ve maintenance has been rela8vely limited. Given the vast poten8al and cri8cal 
significance of prescrip8ve maintenance, it is evident that further research in this area is 
impera8ve. 
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Publica1ons 
 
1st Conference Paper 
1st conference paper has been published in IEEE. The 8tle of the paper is “Ar8ficial Intelligence 
Enabled Digital Twin for Predic8ve Maintenance in Industrial Automa8on System: A Novel 
Framework and Case Study”. Below are the details of the paper and the link.  
 
Sponsored: IEEE Industrial Electronic Society  
Host: Loughborough University 
Loca8on: United Kingdom  
Date: 15th March – 17th March  
Link: hVps://ieeexplore.ieee.org/document/10101971 
  
2nd Conference Paper 
The second conference has been accepted for publica8on. The 8tle of the paper is “Machine 
Learning Enabled Digital Twin for Industrial Control Black Box System: A Novel Framework and 
Case Study”. 
 
Sponsored: IEEE Robo8cs and Automa8on Society  
Host: Aston University  
Loca8on: United Kingdom  
Date: 30th August- 1st September  
 
Journal  
The journal paper has been submiVed to IEEE Transac8ons on Industrial Informa8cs. The 8tle 
of the journal is “Real-World Anomaly Detec8on in Control Systems Using Ar8ficial Intelligence 
Driven Digital Twin: A Novel Framework and Case Study” 
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Appendices 
 
Appendix A: Implementa.on Details 
 
In this appendix, we provide addi8onal informa8on on the implementa8on of the NARX model 
and the comparison of state-of-the-art approaches using MATLAB. The NARX model execu8on 
was carried out using MATLAB's Deep Learning Toolbox. Also, another way to implement NARX 
is by using MATLAB APP “ nnstart”. Below is the link for the app.  
 
(hVps://au.mathworks.com/help/deeplearning/ref/nnstart.html)  

 
Addi8onally, MATLAB models were employed to compare state-of-the-art approaches. The 
models were used using the following links.  
 
(hVps://au.mathworks.com/help/stats/anomaly-detec8on.html) 
 
Appendix B: PLC Programming and Data Recording 
 
In this appendix, we provide addi8onal informa8on on the programming of the Programmable 
Logic Controller (PLC) and the data recording process using SYSMAC Studio 
. 
The PLC programming involved the u8liza8on of Func8on Block, ST Logic (Structured Text), 
and Ladder Logic. Each programming language served specific purposes in controlling the 
PLC's behaviour and execu8ng various tasks within the system. The data were recorded using 
SYSMAC Studio of Omron.  
 
Appendix C: Digital Twin Training 
 
In order to train the digital twin model, a dataset comprising 780 seconds of healthy data was 
u8lized. This dataset was carefully selected to represent a variety of normal opera8ng 
condi8ons and captured various parameters relevant to the system under considera8on. The 
inclusion of such diverse and representa8ve data is crucial for developing an accurate and 
robust digital twin model. 
 
Appendix D: Algorithm Valida.on Data 
 
The data used for algorithm valida8on was collected from an industrial control system located 
at the Federa8on University Churchill campus. The industrial control system served as the 
testbed for evalua8ng the algorithm's effec8veness in detec8ng anomalies. 
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