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Abstract

Industrial control systems play a crucial role in enabling advanced manufacturing operations.
However, these systems are inherently susceptible to failure. Detecting faults at an early stage
is of paramount importance, as it can prevent the occurrence of fatal and catastrophic
consequences resulting from equipment failures. Moreover, timely detection and resolution
of faults can save significant costs and time for organizations. The failure of these systems not
only poses risks to operators but can also lead to substantial delays in the advanced
manufacturing process, imposing substantial financial burdens on organizations.

Therefore, a methodology is needed that can be used to avoid the adverse effects of
equipment failure of industrial control systems to achieve smooth advanced manufacturing
operations. To achieve this, the methodology should be able to detect the abnormal
behaviour of the system at very early stages for predictive maintenance. This methodology
can be designed using an extremely popular concept known as the Digital Twin, which has
gained significant importance in the era of Industry 4.0.

In this research, artificial intelligence techniques will be employed to develop a highly accurate
and detailed digital twin model. This model will serve as a valuable tool for predictive
maintenance in complex industrial control systems, facilitating the achievement of smooth
and uninterrupted advanced manufacturing processes. Also, the performance of the
proposed Digital Twin model will be compared with state-of-the-art anomaly detection
approaches.

The digital twin, utilizing the proposed algorithms, will not only be able to detect anomalies
but also quantify their severity, classifying them into different levels such as minor, severe,
and faulty operations. Furthermore, the research addresses the generalization challenges
faced by state-of-the-art approaches, showcasing the digital twin's ability to effectively classify
unseen data as healthy or anomalous.

The results obtained from the analysis and comparison of state-of-the-art approaches with
the proposed algorithms clearly demonstrate the methodology's capability to detect
anomalies, quantify their level, and classify them accurately and effectively in real-world data.
This validation underscores the robustness and reliability of the developed methodology,
further solidifying its potential as a valuable tool for predictive maintenance in complex
industrial control systems.
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Chapter 1 — Introduction

This chapter serves as an introduction to the research project, which focuses on the utilization
of digital twin technology for predictive maintenance in industrial control systems. The
chapter begins by exploring the significance of industrial control systems in the context of
advanced manufacturing and Industry 4.0, highlighting their pivotal role in ensuring efficient
and reliable operations. Following this, the potential risks associated with industrial control
system failures and their catastrophic and detrimental effects are examined, emphasizing the
criticality of implementing effective maintenance strategies. Subsequently, various
maintenance strategies employed in the industry to mitigate the risks and ensure optimal
performance are discussed, providing a foundation for the subsequent investigation.
Additionally, the chapter delves into the concept of digital twins—a powerful technology
enabling virtual representations of physical systems—and its potential applications in the
realm of industrial control systems maintenance. Lastly, the research objectives guiding this
study are presented, outlining the specific aims and areas of focus that address research gaps
and contribute to the advancement of industrial control systems maintenance practices.

Industry 4.0, also known as the Fourth Industrial Revolution (IR 4.0), represents a paradigm
shift in manufacturing, driven by the integration of digital technologies into industrial
processes [1]. IR 4.0 refers to the integration of physical components (such as machinery,
devices, and sensors) and cyber components (including advanced software) through
networks. This integration is driven by technology categories specific to Industry 4.0, which
are utilized for prediction, control, maintenance, and process integration in the manufacturing
[2]. IR 4.0 places a strong emphasis on the digitalization of the manufacturing process, aiming
to leverage technological advancements and digitization to enhance and transform industrial
operations [3].

Industrial control system devices play a crucial role in promoting the digitalization of
manufacturing in IR 4.0[4]. These systems, with their ability to enhance flexibility and
productivity, serve as a fundamental component in advanced manufacturing processes,
thereby maintaining their essential role in the industrial operations [5]. The industrial control
systems employed encompass various devices such as programmable logic controllers and
other control devices. These instrumental devices play a critical role in ensuring the seamless
operation of manufacturing processes and finding extensive applications in assembly lines,
production lines, and robotics. They are adept at minimizing the disparity between desired
and measured outcomes, contributing to efficient and accurate manufacturing operations [6].
Also, automation systems are extensively employed across a range of industries such as smart
manufacturing, smart homes, automobile, aerospace, robotics, and healthcare. Some of these
industries, for example, healthcare is highly sensitive.

It is essential to acknowledge that while these systems bring numerous benefits, they are not
immune to errors. Faults in the automation system used in sensitive industries can have severe
consequences, including potentially fatal and catastrophic effects. These implications highlight
the critical importance of ensuring the reliability and robustness of the system [7]. Academic
experts and industry practitioners believe that in order to meet the future demand in the
manufacturing process, automation systems should be improved [8]. Therefore, it is vital to



have an approach that can be used to avoid failures of control and automation systems to
avoid catastrophic effects.

Effective condition monitoring plays a pivotal role in ensuring seamless advanced
manufacturing operations. Maintenance costs, which can account for a substantial portion
ranging from 15% to 60% of total manufacturing expenses, underscore the importance of well-
planned maintenance strategies [9]. Inefficient maintenance practices can result in a
significant reduction of up to 20% in an organization's manufacturing capability [10].
Moreover, inadequate condition monitoring of equipment poses substantial risks to
manufacturing workers, with more than 30% of reported fatalities in manufacturing
environments linked to maintenance-related activities [11].
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Fig. 2. Different maintenance approaches [ Ref: MATLAB-
https://au.mathworks.com/discovery/predictive-maintenance-matlab.html]

Conventional condition monitoring methods offer reactive and preventative maintenance
approaches but come with their own limitations, including higher maintenance costs,
increased downtime, and the need for larger spare parts inventory and assets as can be seen
in Fig. 2. Predictive maintenance, on the other hand, overcomes these challenges by providing
continuous predictions regarding asset failure, thus offering a more proactive and efficient
maintenance approach. Predictive maintenance has gained significant importance within the
context of IR 4.0. It involves the analysis of data to identify and detect anomalies within a
system [12]. Anomaly detection pertains to the task of identifying patterns within data that
deviate from the anticipated or normal behaviour [13]. By proactively identifying these
irregularities, organizations can take timely action to prevent asset failure and optimize
maintenance operations [12]. By detecting machine failures in advance, pre-emptive
maintenance and repairs can be carried out more efficiently, leading to a reduction in
production costs [14]. These anomalies can be timely detected by using the Digital Twin
technology [13].

The concept, known as Digital Twin (DT) has also gained significant importance in the context
of IR 4.0 due to the increasing significance of digitalization in the manufacturing process [15].
DT, as a digital replica of a physical system, effectively reflects the status and behaviour of the
physical system within the cyber/digital domain [16]. The development of DT technology has
generated substantial interest from industry and academia alike in recent years [17]. The
growing trend across various industries is the adoption of DT, driven by the wave of digital
transformation, as it proves instrumental not only during the phases of conceptualization,
prototyping, testing, design, and optimization but also throughout the entire asset lifecycle
[18]. DT surpasses traditional computer-based analysis and simulation by faithfully replicating
the processes and dynamics of the physical domain within the virtual realm [19]. The adoption
of DT technology by NASA has enabled the emulation of its flying vehicles' behaviour, leading
to an unprecedented level of safety that would have been unattainable with conventional



approaches[20]. The concept of DT has gained widespread acceptance across diverse
industries, including manufacturing, aerospace, electric grids, healthcare, petroleum, and
more[21]. As a powerful tool, DT holds immense potential in various industrial contexts,
serving as a catalyst for prognostic analysis, health management [22], predictive maintenance
[13] and other critical applications.

This research presents a comprehensive methodology for predictive maintenance in complex
industrial control systems using Digital Twin (DT) technology. In the introduction, an overview
of the significance and context of the study has been provided, highlighting the challenges
and opportunities in the realm of predictive maintenance for industrial control systems.
Building upon this foundation, Section 1.1 delves into the specific research objectives that
guide this investigation. These research objectives have been formulated based on a thorough
analysis of the existing literature, industry needs, and the potential impact of digital twin
technology in the field of predictive maintenance. By aligning the research objectives with the
identified gaps and the practical demands of the industry, this study aims to address the
pressing issues and contribute valuable insights to the advancement of industrial control
systems maintenance practices.

1.1 Research Objectives

The objectives of this research are to develop a robust predictive maintenance algorithm
specifically tailored for industrial automation and control systems. The utilization of DT
technology was proposed to enable early detection of anomalies, thereby preventing the
potentially catastrophic consequences of equipment failure. However, it was recognized that
the mere detection of anomalies is insufficient. Therefore, a methodology was also sought to
quantify the severity of an anomaly, facilitating appropriate actions to be taken. For instance,
in cases where minor anomalies are identified in system performance, repairs or maintenance
services can be initiated to mitigate the risk of equipment failure. Conversely, a significant
number of anomalies might indicate that a fault has already occurred, necessitating the
replacement of the entire system.

However, the initial and fundamental step in this research was to thoroughly investigate and
develop a methodology specifically designed for constructing a robust DT model of an
industrial control system. This entailed addressing the challenges associated with modelling
and understanding the internal workings of the system, which often lack transparency. By
focusing on this crucial aspect, the aim was to establish a comprehensive and reliable
framework for creating a DT model that accurately represents the behaviour and dynamics of
the industrial control system.

The objectives of this research are detailed below.

Research Objective 1: Undertake a comprehensive investigation and devise an advanced
methodology for constructing a highly robust and reliable DT model specifically tailored to
the unique characteristics and complexities of an industrial control system.

This objective involves analysing existing approaches and techniques for DT modelling,
addressing challenges related to limited access to internal algorithms and potential data
limitations, and exploring advanced modelling techniques such as physics-based and data-



driven approaches. The ultimate goal is to establish a methodology that ensures an accurate
and effective representation of the system in the DT for enhanced predictive maintenance
capabilities.

Research Objective 2: Develop and implement a predictive maintenance algorithm utilizing
DT technology for industrial automation and control systems. This algorithm will enable the
early detection and identification of anomalies, facilitating timely interventions and
maintenance actions to ensure the performance and reliability of the systems.

By analysing data from the DT, the algorithm will enable proactive identification of potential
issues or deviations from normal behaviour, allowing for timely interventions and
maintenance actions. The algorithm aims to optimize the maintenance strategy, minimize
downtime, and enhance the overall performance and reliability of the industrial automation
and control systems.

Research Objective 3: Examine and validate the proposed methodology in Research
Objective 2 to quantify anomaly severity and enhance false positive mitigation in industrial
automation and control systems.

To thoroughly examine and validate the proposed methodology outlined in Research
Objective 2, focusing on its ability not only to detect anomalies but also to quantify the
severity of anomalies and effectively address the challenge of false positive mitigation within
industrial automation and control systems. This examination aims to ensure the robustness
and reliability of the methodology in providing comprehensive anomaly detection, severity
assessment, and false positive mitigation capabilities.

Research Objective 4: Investigate state-of-the-art machine learning, deep learning, and
statistical approaches to assess their ability to detect anomalies in unseen data patterns,
distinct from the data on which these approaches were trained and evaluate their
performance in terms of mitigating false positives.

This objective aims to explore state-of-the-art techniques in machine learning, deep learning,
and statistical analysis to assess their capability to mitigate false positives in anomaly
detection algorithms. The objective involves a comprehensive examination of advanced
architectures, novel algorithms, and established methodologies, all aimed at improving the
algorithms' capacity to mitigate false positives and accurately differentiate between healthy
and faulty operations under various operating conditions.

The research objectives defined earlier establish a clear focus on leveraging digital twin
technology for predictive maintenance in industrial control systems. To accomplish these
objectives, it is imperative to examine the existing body of literature in this domain. The
subsequent chapter will further explore the existing literature, providing a comprehensive
theoretical framework to support and inform the achievement of these research objectives.

The remainder of the thesis structure is as follows. Chapter 2 provides a detailed exploration
of the methods employed in the industry for both digital twin implementation and predictive
maintenance. It examines the current practices, techniques, and challenges associated with
these areas, offering a comprehensive overview of the existing landscape. In Chapter 3, state-
of-the-Art anomaly detection approaches are used to detect anomalies in real-time sensor
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data. Chapter 4 introduces the methodology for developing a robust DT model and predictive
maintenance algorithm, leveraging Artificial Intelligence techniques. The effectiveness of the
proposed methodology is then validated through a detailed case study in Chapter 5, which
involves the application of the methodology on a real industrial control system. Chapter 6
presents the results and discussions derived from the case study, providing insights into the
performance and capabilities of the methodology. Finally, Chapter 7 offers a conclusion
summarizing the key findings, contributions, and implications of the study. Future directions
are discussed in Chapter 8.
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Chapter 2: Literature Review

The literature review presented in this chapter offers a broad exploration of the current state
of research and practices in the field of digital twin technology for predictive maintenance in
control systems. The review encompasses several crucial areas of investigation, including the
challenges, research gaps, and related work associated with digital twin implementation.
Additionally, it delves into various modelling approaches utilized in digital twin development,
with a specific focus on pattern recognition state-of-the-art approaches. Furthermore, the
review encompasses an analysis of maintenance strategies employed in industry settings to
address maintenance-related challenges. By synthesizing the wealth of existing knowledge,
this literature review serves as a foundation for identifying areas where further research is
warranted. Finally, in alignment with the review findings, the chapter concludes with a
presentation of the research questions that will guide the subsequent investigation.

2.1 Related Work, Challenges and Contribution

Creating a high-fidelity DT model of a physical system within a cyber-domain can present
challenges [23]. However, robust DT modelling can be achieved through the application of
physics-based and data-driven approaches. The physics-based approach, widely employed by
the engineering community across various industries, is the predominant method for DT
modelling [24]. Software tools such as MATLAB, ADAMS, and COMSOL are commonly utilized
for physics-based approaches [25]. It is important to have enough reliable data for the
effective implementation of the physics-based approach, as corrupt data can lead to the
underperformance of the DT model [17].

2.1.1: Digital Twin for Industrial Control System (ICBBS)

While researchers have extensively explored the concept of digital twins for multiple control
applications, it is noteworthy that the predominant emphasis has been on a physics-based
approach. For instance, in [25], a comprehensive architecture for feedback infrared
temperature uniformity control was proposed, while [26] presented a DT framework for
distributed control systems. [27] discussed the analytical design of optimal fractional order
PID control for industrial robots based on DT. Additionally, [28] introduced a self-optimizing
control approach that combines DT, intelligence, and derivative-free optimization. The virtual
modelling of physical systems within the cyber domain has been accomplished using software
tools like MATLAB, Unity 3D, and others in these studies. However, employing a traditional
physics-based approach for virtual modelling of industrial control systems used in advanced
manufacturing poses significant challenges, as the internal algorithms may be unknown, and
data sets may be unavailable, rendering these systems as black boxes.

A 'black box' refers to a system or device whose internal workings and processes are not
readily accessible or understood. Instead, the system's behaviour and functionality are
assessed solely by examining the inputs it receives and the outputs it generates. In essence, it
operates as an opaque entity where the inner mechanisms, algorithms, and processes remain
concealed. For example, an industrial control system in a manufacturing facility. This system
may regulate various processes, such as temperature control, production line speed, or
material handling. While the system's inputs, such as sensor data, control signals, and
operator commands, are well-documented, the intricate details of how these inputs are
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processed and translated into actions are not visible or easily decipherable. Therefore, a 'black
box' system is characterized by the necessity to infer its behaviour solely from the observable
inputs and outputs, without access to the underlying internal processes. This concept is
essential in scenarios where understanding the inner workings of the system is not the
primary focus, but rather assessing its performance and functionality in practical applications.

In this work, black-box systems applied to industrial control are referred to as Industrial
Control Black Box System (ICBBS). These ICBBS represent a unique and critical component
within industrial control systems due to their inherent complexity. While there are existing
black box systems based on machine learning in research, this study has identified a notable
gap in the development of a framework specifically for constructing a DT model of the ICBBS.
For example, in [29], a DT architecture was presented for a power electronic converter,
treating the simulation model as a black box. However, this research relied on simulation data
for validation and focused on a different application domain than industrial control systems.
Consequently, formulating a comprehensive and systematic methodology for constructing a
digital twin model of an ICBBS that addresses the specific requirements of industrial control
systems remains a challenging task.

2.1.2 Digital Twin Based Anomaly Detection

In [30], the authors introduce an innovative approach termed 'end-to-end anomaly detection'
designed to identify real-time anomalies using Digital Twin (DT) technology. This method relies
on attention mechanisms and multidimensional deconvolutional networks to discern crucial
features during the anomaly detection process. Nevertheless, it's worth noting that the study
lacks an in-depth exploration of the specific hardware configurations within the Industrial
Control Systems (ICS) utilized for their case study. Such details hold significant importance in
research since the complexity of the hardware environment can substantially impact the
efficacy of the proposed methodology. Furthermore, the validation of the methodology's
effectiveness appears to lack transparency regarding the data patterns used for evaluation.

In [13], researchers present an approach for detecting anomalies in real-world scenarios
employing DT technology. This study introduces two distinct methodologies: a clustering-
based method referred to as 'cluster centres' (CC) and a neural architecture based on the
Siamese Autoencoder (SAE). To construct the Digital Twin, a physics-based approach was
employed, integrating tools like the Greencity library and Simulation X for simulation
purposes. However, it's essential to recognize that these approaches may face considerable
challenges when applied to complex systems like Industrial Control Systems (ICS), where
internal system details are often limited, resulting in 'black-box' characteristics. Additionally,
the reliance on physics-based information necessitates an abundance of data sheets for the
virtual modelling of the DT, which may not always be readily accessible for ICS within
manufacturing environments.

2.1.3 Anomaly Detection Using Conventional Approaches

In the study conducted by [31], the authors introduced the fault-attention generative
probabilistic adversarial autoencoder (FGPAA) approach for anomaly detection. FGPAA is
designed to automatically identify low-dimensional structures within high-dimensional signal
data, effectively reducing information loss during feature extraction. Additionally, in the
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research outlined in [32], a hybrid Nonlinear Multimode Framework was employed. This
strategy combines techniques such as the Dirichlet process Gaussian mixed model (DPGMM)
for mode classification and support vector data description (SVDD) to construct monitoring
statistics for fault detection without prior knowledge. In [33], the proposed Optimal Window-
Symbolic Time Series Analysis (OW-STSA) methodology aims to optimize feature extraction
and pattern classification in industrial processes. The focus is on distinguishing between
normal and anomalous operations by segmenting time series into optimized windows,
computing stationary state probability vectors for anomaly prediction, and determining locally
optimal accuracy for detection. Subsequently, [34] introduced the one-class support Tucker
machine (OCSTuM) and the OCSTuM based on tensor tucker factorization and a genetic
algorithm (GA-OCSTuM). These novel methods were developed for unsupervised anomaly
detection in large-scale Internet of Things (loT) sensor data. Leveraging tensor
representations, these approaches retain structural information within the data, leading to
improved accuracy and efficiency in outlier detection compared to traditional vector-based
methods. Furthermore, in [35], the authors presented the smoothness-inducing sequential
variational auto-encoder (SISVAE) model, designed for robust estimation and anomaly
detection in multidimensional time series. This model utilizes flexible neural networks to
capture temporal structures and applies a smoothness-inducing prior.

However, it's important to note a common limitation in these approaches, including
Variational Autoencoders (VAE) and Generative Adversarial Networks (GAN). They often
exhibit suboptimal decision criteria as their primary objective functions are designed for tasks
other than anomaly detection, such as generic summarization, data synthesis, or sequence
prediction [36].

Finally, [37] proposes an integrated deep generative model known as AMBI-GAN for industrial
time-series anomaly detection. This approach utilizes bidirectional LSTM networks with an
attention mechanism to capture time-series dependencies and features. However, based on
the information available in the paper, it remains unclear whether the data used in the study
is specifically derived from an industrial system. The paper mentions three datasets, including
Yahoo, social media time-series plus (SMTP), and an activity recognition system based on
multi-sensor data fusion (AReM). While the AReM dataset appears to involve sensor data
related to various human activities, such as standing, sitting, bending, cycling, etc., there is no
explicit mention of industrial system data. Therefore, the effectiveness of this approach on
real-time industrial time-series data, especially data with noise, remains uncertain.

It is clear from the existing review that the proposed approaches have limitations. Therefore,
a novel approach is needed that can be used to not only detect anomalies but it can also
quantify the level of anomalies and mitigate false positives for the smooth operation and
condition monitoring of industrial control systems.

2.2: Data-Driven Model
After extensive research and investigation, it has been determined that artificial neural
networks (ANNs), drawing inspiration from the biological neural network in the human brain,

offer a promising data-driven approach. ANNs have emerged as a powerful tool for modelling
black box systems due to their ability to learn intricate relationships between inputs and
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outputs, capture non-linear dependencies, and exhibit robustness to noise. As a result, ANNs
have gained significant traction in the industry for addressing pattern recognition challenges
[38].

2.2.1 ANN

ANNs have become increasingly appealing, effective, efficient, and successful in achieving
pattern recognition (PR) in numerous problem domains[39]. Unlike conventional pattern
approaches, artificial neural networks (ANNs) have the inherent capability to effectively model
complex or multi-complex tasks with relative ease [40]. The preceding conventional
methodologies employed for addressing PR issues can be categorized into structural,
statistical, and hybrid methodologies[38]. However, both the statistical and structural
approaches may not provide satisfactory results when applied as solutions to complex PR
problems alone. For example, the structural method may be weak in handling noise patterns
and ineffective in addressing challenges related to the numerical semantic information [38].
Similarly, the statistical method lacks the capability to utilize information pertaining to pattern
structures. Consequently, the integration of both approaches has garnered research interest,
leading to the development of a hybrid approach. However, in contemporary times, Artificial
Neural Network (ANN) models are increasingly employed due to their ability to yield superior
outcomes in PR problems, including those involving multiple complex tasks [38].

2.2.2ANN Pattern Recognition

A pattern can be defined as a collection of items, objects, images, events, cases, situations,
features, or abstractions in which elements within the set share common characteristics in a
distinct manner. Whereas Norbert Wiener provided a definition of a pattern as an
arrangement based on the sequence of its constituent features, Watanabe offered an
alternate perspective by defining a pattern as "an entity" [41].
ANNs in pattern recognition (PR) leverage insights from human brain processing. They are
well-suited for identifying patterns and employ large networks of nonlinear and
straightforward units known as neural nets. PR tasks are accomplished using feedforward
networks (FFNNs) that process data in a forward direction [42, 43].

2.2.3 Types of ANN

There are various types of ANNs. Among them, the two major networks are Convolutional
Neural Networks(CNNs), Feedforward Neural Networks and Recurrent Neural Networks
[RNNs] [44]. CNNs are a specialized type of neural network architecture designed to effectively
process and analyse visual data, making them highly suitable for tasks such as image
classification, and image recognition [45]. A feedforward neural network is a type of artificial
neural network where information flows in a single direction, from the input layer to the
output layer. It consists of multiple layers of interconnected nodes, or neurons, where each
neuron in a given layer is connected to every neuron in the subsequent layer [46]. For
regression, RNNs are highly efficient [47].

2.2.3.1 Recurrent Neural Network (RNN)

Most of the sensor data are in time series. RNN-based models have shown significant progress
in various time series forecasting tasks, which are essential in industrial and business decision
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processes [48]. Also, the majority of the real-world systems utilized in industry exhibit dynamic
characteristics [49].

It is important to note that to model the dynamic behaviour of the physical system in the
virtual world, the neural network should also be dynamic in the nature [29]. One suitable
option for modelling dynamic systems is a recurrent neural network (RNN) [50]. RNNs are
particularly well-suited for sequential and time series data [49] and have demonstrated state-
of-the-art performance in these domains [51].

The NARX (nonlinear autoregressive network with exogenous inputs) is a type of recurrent
dynamic network that incorporates feedback connections and multiple layers. This neural
network, known as NARX, is well-suited for forecasting nonlinear time series data [52, 53].

Unlike feedforward neural networks (FNN), NARX incorporates internal states and can perform
backpropagation, enabling them to effectively model dynamic systems. In contrast, FNNs lack
the backpropagation option and can only predict output based on the present input value,
making them unsuitable for dynamic system modelling [29].

2.2.3.2 NARX Basics

The NARX model, as a discrete-time nonlinear system, can be represented mathematically as
[54]:

y(n +1) = fly(n); u(n)] (1)

In this representation, y(n) and u(n) denote the output and input regressors, respectively. The
mapping function f(-) is typically unknown and requires approximation.

input layer hidden layer output layer

0
u(n)

i(n) <

(

\

y(n) <

Fig. 3. illustrates the configuration of a NARX [54]
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The meanings of the symbols used in Fig. 3 can be found in Table 1.

Table 1: Symbols [53]

Symbol Quantity

Wi, Connection weight between the ith neuron in input layer and the jth
Neuron ;j in hidden layer

Wi Connection weight between the ith neuron in hidden layer and the
output neuron

b, Bias weight of the ith neuron in the hidden layer

b,> Bias weight of the output neuron

n;' Input value for the ith neuron in the hidden layer

ni’ Input value for the output layer

f1() Activation function of hidden layer

1) Activation function of output layer

a;' Output value of the ith neuron in the hidden layer

alz Output of network

d, The input-memory orders

d, The output-memory orders

Fig. 4 displays the two training modes available for a NARX neural network.

1. Parallel (P) mode: In this mode, the estimated outputs are fed back and incorporated
into the regressor of the output. The equation for estimating the next output value is
represented as [54]

yin+1)="1["y(n),..., y(n-dy+1);u(n),u(n-1),...,u(n-du+1)]

Here, the hat symbol () signifies estimated values or functions.
2. Series-parallel (SP) mode: In this mode, the regressor for the output is constructed
solely using the actual values of the system's output. The equation for estimating the
next output value is represented as [54]

“y(n+1)="fly(n),...,y(n-dy+1);u(n),uln-1),...,u(n-du+1)]
Here, the hat symbol (") denotes estimated values or functions.

Both structures can be utilized for network training, depending on the availability of data. The
appropriate structure should be selected based on the data characteristics. For example, if the
actual system output is obtainable for training, the series-parallel architecture is preferred.
This architecture incorporates the real output data instead of the estimated output from the
NARX [55]. Utilizing actual data enhances the accuracy of input data during training, leading
to improved network performance [55].

Following the identification and training of the suitable neural network for the Digital Twin
(DT) model, the subsequent task involves exploring and determining the appropriate
maintenance strategy for efficient condition monitoring. This crucial step aims to select the
optimal approach that allows the DT model to effectively monitor the system's condition. By
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choosing the right maintenance strategy, the DT model can proactively detect and address
potential issues, leading to enhanced operational efficiency and minimized downtime.

u(®)—> D > u(t) —> D >
L feedforward| L feedforward
y(@ 1 p
neural > neura —— ¥(?)
[ ] network — network
> D g y(@)—> D >
(@) (b)

Fig. 4. NARX architectures [54]

2.3 Maintenance Evolution

There are multiple maintenance methods available, each with its own trade-off between
complexity and costs. Below are the three most important maintenance methods used within
the industry, including:

1. Reactive maintenance: This method involves performing maintenance activities only
when a component breaks down. It is commonly employed for components with low
cost and minimal risk of hazardous situations. Reactive maintenance can lead to
unscheduled machine downtime and is considered the most expensive maintenance
approach. It also carries a high risk of catastrophic failures affecting the entire machine
[56].

2. Preventive maintenance: Preventive maintenance involves conducting maintenance
activities at predetermined intervals. In this approach, the expected lifetime of each
component is assessed, and maintenance is performed before the component is likely
to fail. Preventive maintenance enables businesses to schedule maintenance activities
and minimize machine downtime. However, this method can result in the
underutilization of components [56], as there is a tendency to over-maintain machines
for safety and service maintenance, which can be costly [57].

3. Predictive Maintenance: Predictive maintenance (PM) is a novel approach in the
manufacturing industry that focuses on detecting signs of machine degradation before
failures happen. It plays a significant role in the vision of Industry 4.0 and smart
manufacturing. By utilizing sensor readings, process parameters, and operational
characteristics, PM aims to optimize tool lifespan by minimizing unnecessary repairs
and decreasing the occurrence of unexpected failures. Detecting machine failures in
advance can lead to more efficient maintenance and repairs, resulting in reduced
production costs[14]. Predictive maintenance involves detecting early anomalies or
deviations in the system's behaviour or performance to prevent asset failure. By
monitoring and analysing various data sources such as sensor readings, equipment
parameters, and operational patterns, predictive maintenance aims to identify
potential issues and take proactive measures before they lead to the system or asset
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failure[13]. Identifying abnormal behaviours in data centres is vital for the purposes of
predictive maintenance and safeguarding data integrity [58].

2.3.1 Anomaly Detection

The anomaly detection [59] involves identifying patterns in data that deviate from expected
or normal behaviour. It is a highly researched field with diverse applications, including the
energy [60], manufacturing [61], network sensors [62], health care, and video surveillance
[63]. The goal is to detect and flag instances that differ significantly from the norm, allowing
for early identification of potential issues or threats.

Anomaly detection techniques that rely on machine learning can be categorized into various
approaches. These approaches include:

1. Supervised Approaches: These methods require a sufficiently large set of training
samples with labelled data. The training data consists of both normal and anomalous
instances, allowing the model to learn the patterns and characteristics of anomalies
[64].

2. Unsupervised Approaches: In this type of approach, only unlabelled measurement
data is available. The model learns the normal behaviour from the data and then
identifies instances that deviate significantly from this learned behaviour as anomalies.
Unsupervised approaches do not rely on predefined anomaly labels [64].

3. Weakly Supervised Approaches: This approach utilizes a large amount of unlabelled
data along with a very small set of labelled data. The labelled data serves as weak
supervision to guide the learning process. The model can leverage the small, labelled
dataset to learn the characteristics of anomalies and generalize this knowledge to
detect anomalies in the larger unlabelled dataset [64].

Each approach has its own strengths and limitations, and the choice of the most suitable
approach depends on the availability of labelled data, the specific requirements of the
application, and the desired trade-off between detection accuracy and resource requirements
[13].

After an in-depth review of the relevant literature, a set of challenging questions has arisen,
posing significant hurdles for the development and implementation of the digital twin model
and predictive maintenance in control systems. These questions highlight the complexities
and intricacies involved in integrating digital twin technology and predictive maintenance
techniques within control systems. By addressing these questions head-on, this research aims
to overcome these hurdles, explore effective solutions, and pave the way for the successful
deployment of digital twin models and predictive maintenance strategies in control systems.
The ultimate goal is to enhance the performance of control systems, enabling them to
effectively facilitate advanced manufacturing processes while mitigating the potentially
catastrophic and fatal consequences of system failures.
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2.4 Research Questions

After an extensive review of the relevant literature, this research will address the following
questions:

Research question 1: What approach can be employed to develop a robust Digital Twin for
an industrial control black box system?

This question aims to identify and outline a suitable methodology that ensures the creation
of a reliable and accurate Digital Twin model for such systems.

Research question 2: What methodology should be adopted to develop a Predictive
Maintenance algorithm specifically tailored for control and automation systems?

This question focuses on exploring and defining the appropriate steps and techniques
necessary to design an effective Predictive Maintenance algorithm catering to the unique
requirements of control and automation systems.

Research question 3: How can the level of anomalies be quantified within the context of
control and automation systems?

This question seeks to develop a quantifiable measure or metric that can accurately assess
and evaluate the severity or magnitude of anomalies occurring within these systems.

Research question 4: How can the generalization capability of anomaly detection algorithms
be enhanced to accurately classify and detect anomalies in unseen data patterns in control
and automation systems?

This question aims to explore techniques and approaches that improve the generalization
capability of anomaly detection algorithms, enabling them to effectively differentiate between
unseen healthy and faulty operations in diverse operating conditions.

Addressing these research questions will contribute to a better understanding of the
methodology for developing a robust Digital Twin, the methodologies used in developing
Predictive Maintenance algorithms for control and automation systems, and the
quantification of anomalies within these systems.

In this chapter, a comprehensive review of the existing literature on digital twin technology
for predictive maintenance in control systems has been presented. The review has shed light
on the challenges, research gaps, related work, digital twin modelling approaches, pattern
recognition techniques, and maintenance strategies employed in the industry. Drawing upon
the insights gained from the literature review, the chapter concludes with the presentation of
the research questions that will drive the subsequent phase of this study. To address and
answer these research questions, the next chapter, titled 'State-of-the-Art Anomaly Detection
Approaches," will explore the latest advancements in anomaly detection techniques.
Specifically, state-of-the-art approaches will be applied to real-time sensor data, providing
practical insights into their effectiveness and applicability in the context of industrial control
systems.
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Chapter 3: State-of-the-Art Anomaly Detection Approaches

This chapter focuses on evaluating the performance of state-of-the-art anomaly detection
approaches within an industrial control system using real system data recorded during this
research. The objective is to assess their effectiveness in detecting anomalies, quantifying
their severity, and distinguishing between healthy and faulty operations. The results
presented in the tables and analysis are based solely on the data collected and analysed during
this research effort, ensuring the relevance and applicability of the findings.

The evaluated state-of-the-art anomaly detection approaches encompass machine learning
algorithms such as Local Outlier Factor, One-Class Support Vector Machine, Isolation Forest,
and Robust Random Cut Forest. Additionally, a deep learning approach utilizing an
Autoencoder and a statistical approach employing the Mahalanobis Distance were also
evaluated. The real-time sensor data used in this study were exclusively recorded from the
industrial control system during this research. The recorded data were used to train the state-
of-the-art models and the effectiveness of the trained models were validated against the
dataset encompasses instances representing healthy conditions, minor anomalies, severe
anomalies, and system faults.

By conducting the evaluation of the data recorded specifically for this research, any confusion
or potential overlap with other datasets or experiments is eliminated, ensuring the integrity
and validity of the results obtained.

3.1. Anomaly Detection

To compare the performance of the different approaches, several tables were created. Table
2 presents a ranking of the approaches based on their effectiveness in detecting minor
anomalies, severe anomalies, and system faults. These rankings were derived using data

patterns identical to those used for training the algorithms.

Table 2. Anomaly Detection

Training Algorithms Minor Severe Faulty Total
Method (1) (1) (1) (3)
Local Outlier Factor v v v 3
One Class Support v v v
Machine Vector Machine 3
L .
carning Isolation Forest X X v 1
Robust Random Cut % % % i
Forest
D
cep . Autoencoder v v v 3
Learning
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Statistical Mahalanobis v v v
Approach Distance

3.2. Anomaly Severity Quantification

Table 3 showecases the effectiveness of the approaches in quantifying the severity of
anomalies. The severity quantification is crucial in enabling industries to make informed
decisions based on the observed anomaly severity. For minor anomalies, all evaluated
approaches accurately quantify the severity, indicating the presence of noise or minor
deviations from normal operation. However, in cases where the number of observed
anomalies is significantly high, the approaches accurately capture the severity, signalling large-
scale disruptions or system malfunctions. This feature allows decision-makers to prioritize
actions based on the level of risk associated with the observed anomalies.

Table 3. Anomaly Severity Quantification

Training Algorithms Minor Severe Faulty Total
Method (1) (1) (1) (Out of 3)
Local Outlier Factor v v v 3
. One Class Support v v v 3
Machine Vector Machine
Learnin
8 Isolation Forest X X v 1
Robust Random % % % i
Cut Forest
Deep . Autoencoder v v v 3
Learning
Statistical Mahalanob:s v v v 3
Approach Distance

3.3. Detected Anomaly Location in Data

Table 4 illustrates how effectively the approaches detect anomaly points and their respective
locations within the data. This information is valuable as it provides insights into the nature
and specific locations of anomalies. For example, if anomalies are observed only during the
high-speed operation of a rotating shaft, it may suggest specific issues related to that
particular condition.

The total score was calculated by addition of the % of minor, severe and faulty data. For
example Local outlier factor detected 90% (0.9) for minor, 76.19% (0.76) for severe and
68.12% (0.68) for faulty which gave it a total score of 2.34 (0.90+0.76+0.68= 2.34).
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Table 4. Detected Anomaly Points and Location

Training Aleorithms Minor Severe Faulty Total
Method g (11s)  (21s) (665) (Out of3)
. 10s 16s 45s
Local Outlier Factor (90%) (76.19%) (68.18%) 2.34
One Class Support 2s 3s 33s 0.82
H 0 o, 0 °
Machine Vector Machine (18%) (14.28%) (50%)
Learning
Isolation Forest - - 9s 0.13
(13.63%) )
Robust Random Cut
Forest
Deep
. Autoencoder - - - -
Learning
Statistical Mahalanobis 10s 16s 52s 2.4
Approach Distance (90%) (76.19%) (78.78%) )

3.4. Performance Comparison
Table 5 presents the overall scores and rankings given to the approaches, providing a
comprehensive assessment of their performance. The scores are based on a combination of

detection accuracy, severity quantification, and anomaly point identification.

Table 5. Results

Training Algorithm Anomaly Quantification Point Total
Method Detection (3) Identification (Out of 9)

(3) (3)

Local Outlier

Factor 3 3 2.34 8.34
Machine One Class 3 3 0.82 6.82
Learning Support Vector

Machine

Isolation Forest 1 1 0.13 2.13

Robust Random - - - 0

Cut Forest
Deep . Autoencoder 3 3 - 6
Learning
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Statistical Mahalanobis

Approach Distance 3 3 2.44 8.44

3.5. Challenges and Limitations with Generalization

False positive mitigation plays a crucial role in anomaly detection as it refers to the ability of
an algorithm to reduce false alarms and accurately classify anomalies in unseen data patterns.
In other words, a false positive mitigation approach should not only work well on the data it
was trained on but also on new, previously unseen data. Achieving strong false positive
mitigation is vital for real-world applications where industrial systems encounter different
operating conditions and exhibit diverse patterns over time. Anomaly detection algorithms
with robust false positive mitigation capabilities can adapt to novel scenarios and minimize
the occurrence of false alarms, even when faced with data patterns that differ from the
training set.

However, Table 6 reveals a significant limitation of the evaluated approaches. They struggled
to differentiate between unseen healthy and faulty operations. Even when provided with
unseen healthy input, all evaluated approaches misclassified it as severe anomalies in the
system. This indicates that the approaches are limited to working only on seen data, posing a
challenge as industrial systems encounter different tasks daily with varying outputs.

Table 6. Unseen Healthy Data Pattern vs Anomaly Classification

Training ) .

Method Algorithms Healthy Minor Severe Faulty
Local Outlier Factor v
One Class Support v

Machine Vector Machine

Learning Isolation Forest v
Robust Random Cut
Forest

Deep

. Autoencoder

Learning

Statistical Mahalanobis Distance

Approach

This chapter concludes that while the evaluated state-of-the-art anomaly detection
approaches demonstrated effectiveness in detecting anomalies, quantifying their severity,
and identifying anomaly points, they encountered difficulties in distinguishing between
unseen healthy and faulty operations. The statistical approach utilizing Mahalanobis Distance
exhibited remarkable performance, outclassing other machine learning and deep learning
approaches. However, challenges remain in effectively addressing the false positive issue.
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Future research and advancements are necessary to develop approaches that can robustly
detect and classify anomalies in unseen data patterns, enabling proactive maintenance and
improved decision-making in industrial control systems.

Chapter 6 offers a comprehensive explanation of the testing methodology employed, along
with a detailed breakdown of the scores provided in tables 2, 3, 4, 5, and 6. That chapter is a
valuable resource for readers seeking in-depth information on the evaluation process.

The next Chapter presents a methodology that not only addresses the limitations of black box
system digital twin modelling but also introduces an algorithm capable of detecting
anomalies, quantifying their levels, and effectively classifying between healthy and anomaly
datain industrial control systems. This methodology aims to provide a comprehensive solution
by combining insights from data-driven modelling, anomaly detection, severity quantification,
and false positive mitigation.
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Chapter 4: Methodology

In response to the research questions outlined in Chapter 2, and the limitations identified in
Chapter 3, Chapter 4 delves into the development of two innovative algorithms that address
the challenges identified in the literature review. The first algorithm leverages the power of
artificial neural networks to construct a high-fidelity digital twin model for control systems. By
employing advanced modelling techniques based on artificial neural networks, this algorithm
aims to accurately capture the complex dynamics and behaviour of control systems. Building
upon the outcomes of the first algorithm, the second algorithm presents a comprehensive
methodology for predictive maintenance, utilizing the insights derived from the developed
digital twin model. These innovative and novel algorithms represent a significant contribution
to the field of industrial control and automation by providing practical solutions to the
identified challenges.

4.1: Algorithm 1: Digital Twin of ICBBS (Research Question 1)

For a robust and high-fidelity deep learning model of an Industrial Control Black Box System
(ICBBS), the five-step framework (Fig. 5) is proposed in this research that includes system
identification, data collection, network architecture, ANN training, validation and testing, and
digital twin deployment. The utilization of artificial neural networks (ANNs) has been selected
as a machine learning approach to effectively acquire patterns and predict the behaviour of
industrial control systems operating as black box systems. ANNs are a potent tool for
modelling black box systems due to their capability to comprehend complex relationships
between input and output variables, capture non-linear associations, and exhibit noise
tolerance. Consequently, ANNs have gained widespread acceptance and have been
extensively adopted in the industry to address challenges related to pattern recognition.
Aligned with this notion, the current study harnesses the power of ANNs to uncover intricate
patterns and forecast the complex behaviour of ICBBS.

Industrial Control Black Box System Digital Twin Algorithm

1
[ T T T 1
System - Network ANN Training, Validation Digital Twin
Identification st Architecture and Testing Deployment

Fig. 5. ICBBS DT Algorithm

4.1.1. System Identification

The accurate selection of a suitable neural network for a system is contingent upon a thorough
understanding of the system's inherent characteristics. This understanding involves precisely
identifying whether the system exhibits linearity or nonlinearity and whether it possesses
static or dynamic properties. Two valuable principles, the Law of Additivity and the Law of
Homogeneity, aid in discerning the system's nature [65]. The Law of Additivity states that the
system's response to a combination of inputs is equivalent to the sum of its responses to each
individual input. Meanwhile, the Law of Homogeneity dictates that scaling the input will result
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in a proportional scaling of the output response. These principles are applied by utilizing input
and output data obtained directly from the system.

To effectively employ these principles, it is essential to have access to an adequate amount of
input and output data from the system. The availability of such data sets becomes imperative
for facilitating the training, validation, and testing procedures of the neural network. A
sufficient volume of training data enables the network to learn and adapt to the system's
characteristics, resulting in more accurate predictions and improved performance. Therefore,
the precise identification of the system's inherent characteristics, supported by the Law of
Additivity and the Law of Homogeneity, along with the availability of ample training data, are
crucial factors in the accurate selection and successful training of an appropriate neural
network for the system.

The application of the Laws of Homogeneity and Additivity to the recorded data in the
experiment is thoroughly explained in Chapter 5, specifically in Section 5.1.1.

4.1.2. Data Collection

Prior to initiating data recording, it is vital to emphasize the significance of ensuring the
system's reliability. This precautionary measure is crucial as the utilization of flawed or
unreliable data during the training phase can severely impact the accuracy of predictions
generated by the network. Consequently, these inaccuracies can render the predictive
maintenance algorithm unsuitable for facilitating effective decision-making processes.

To address this concern, it is highly recommended to undertake a comprehensive examination
of relevant documents associated with maintenance, troubleshooting, and service records.
This examination serves to obtain a holistic understanding of the system's present condition
and performance. By meticulously reviewing these documents, valuable insights can be
gained regarding the system's historical behaviour, past maintenance practices, identified
issues, and overall operational health.

The insights derived from this thorough examination of documents significantly contribute to
the overall reliability and accuracy of the predictive maintenance algorithm. This, in turn,
enhances its efficacy in providing reliable predictions and facilitating informed decision-
making processes. Therefore, the diligent examination of pertinent documents plays a critical
role in ensuring the integrity and effectiveness of the predictive maintenance approach.

The specifics of the data collection process, encompassing data sources, sensor utilization,
and acquisition procedures, have been extensively detailed in Chapter 5 (Case Study) of the
thesis.

4.1.3. Architecture of Artificial Neural Networks

The selection of an appropriate neural network is of utmost importance when it comes to
accurately predicting the behaviour of a black box system. It plays a pivotal role in ensuring
that the neural network aligns well with the specific characteristics and demands of the
system under investigation. This selection process involves careful consideration of various
factors and the identification of whether the system is static or dynamic [29].
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When dealing with a static system, it is recommended to opt for a static neural network that
can effectively capture and model the system's behaviour. On the other hand, for dynamic
systems that exhibit time-varying or evolving properties, a dynamic neural network is more
suitable. This choice allows for the incorporation of temporal dependencies and enables the
network to adapt and respond to changing system dynamics.

In addition to selecting the appropriate neural network type, meticulous attention should be
given to the selection of hyperparameters, which significantly influence the network's
performance. These hyperparameters encompass various aspects of the network's
architecture and configuration. Some key hyperparameters include [44]:

e The total number of layers in the network
e The number of hidden layers

e The number of neurons within each layer
e The number of feedback delays

e The number of input delays

One crucial hyperparameter to consider is the total number of layers in the network. The
depth of the network plays a vital role in its capacity to learn complex representations and
capture intricate relationships within the data. Another consideration is the number of hidden
layers, which determines the level of abstraction and hierarchical processing in the network.
The total number of layers in the network encompasses all layers, including input, hidden, and
output layers. On the other hand, the number of hidden layers specifically refers to the layers
between the input and output layers, where the actual processing and feature extraction
occur. Furthermore, the number of neurons within each layer is an essential hyperparameter
that affects the network's representational power and capacity to model complex functions.
The choice of the number of feedback delays and input delays is also critical, especially when
dealing with systems that exhibit memory or temporal dependencies.

Careful selection of these hyperparameters is essential to avoid two common pitfalls:
overfitting and underfitting. Overfitting occurs when the network becomes overly complex
and starts to memorize the training data instead of learning general patterns. Conversely,
underfitting happens when the network is too simple and fails to capture the complexity of
the underlying system. To ensure optimal performance and minimize the risks of overfitting
or underfitting, it is crucial to tune and select the hyperparameters carefully. This process
often involves conducting systematic experiments, exploring different configurations, and
leveraging techniques like cross-validation to evaluate the network's performance on unseen
data. By choosing the right neural network type, determining the appropriate number of
layers, neurons, and delays, and diligently fine-tuning the hyperparameters, the network's
accuracy, performance, and generalization capabilities can be enhanced. This comprehensive
approach leads to a more reliable and effective predictive maintenance algorithm for control
and automation systems, facilitating timely and proactive decision-making.

4.1.4. Training, Validation, and Testing of ANN
In the training phase of neural networks, various training algorithms can be employed to

optimize the network's performance. Examples of these algorithms include Levenberg-
Marquardt Backpropagation, Scaled Conjugate Gradient, and Bayesian Regularization, among
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others. Each algorithm has its strengths and limitations, and the choice of algorithm depends
on the specific problem and dataset [44].

Once the neural network training is completed, it is crucial to assess its performance using
appropriate performance metrics. Mean Square Error (MSE), Sum Square Error (SSE), and
Mean Absolute Error (MAE) are commonly used metrics to measure the network's accuracy
and deviation from the desired outputs. These metrics provide quantitative measures of the
network's performance, allowing for comparisons and analysis [44].

To ensure reliable evaluation, it is important to use separate data for validation and testing.
The training data should not be reused for these purposes to avoid bias and overfitting.
Instead, new data specifically collected for validation and testing should be utilized. This
approach provides a realistic assessment of the network's ability to generalize to unseen data
and ensures that the network's performance is not solely optimized for the training dataset
[44].

By partitioning the data into distinct groups—training, validation, and testing sets—it
becomes possible to assess the network's generalization capability accurately. This data
partitioning helps in identifying potential issues such as overfitting, where the network may
perform well on the training data but fails to generalize to new data. By evaluating the
network's performance on unseen data, it becomes easier to fine-tune the model, adjust
hyperparameters, and improve its overall performance and accuracy.

4.1.5. Deployment of Digital Twin

Once the neural network exhibits satisfactory performance across the training, validation, and
testing datasets, it signifies a significant milestone in deploying the Digital Twin as a virtual
model of the Industrial Control Black Box System (ICBBS). This virtual model accurately mirrors
the intricate behaviour and performance of the physical system, providing valuable insights
and support for various applications.

However, if the network falls short of meeting the desired performance standards, it is
important to take proactive steps to improve its capabilities. This involves an iterative process
of refining the network architecture and enriching the training data to enhance its
performance and ensure its accuracy in representing the ICBBS.

Refining the network architecture entails carefully adjusting its structure to better capture the
complexity of the system. This includes making changes to the number of layers, neurons per
layer, and activation functions to optimize the network's ability to learn and understand the
underlying patterns and dynamics. These adjustments are like fine-tuning an instrument,
ensuring that the network is finely calibrated to accurately replicate the behaviour of the
ICBBS.

In addition to architectural adjustments, enriching the training data becomes crucial in further
improving the network's performance. By gathering additional data that represents a wide
range of operating conditions and scenarios, the network can better understand the nuances
of the system and make more accurate predictions.
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Through this iterative process of refining the network architecture and gathering more diverse
training data, the performance of the neural network can be continuously enhanced. This
approach not only addresses initial limitations but also allows the Digital Twin to evolve and
adapt alongside the physical system. The resulting Digital Twin becomes a powerful tool for
analysing and optimizing the ICBBS, enabling better decision-making, proactive maintenance,
and improved efficiency. By continuously fine-tuning the network architecture and expanding
the dataset, the Digital Twin becomes a reliable asset for industrial control and automation
systems. It helps minimize downtime, maximize system performance, and ensure the smooth
operation of the ICBBS.

Once the digital twin reaches a state of readiness for deployment, the subsequent phase
involves the development of a robust predictive maintenance algorithm.

4.2: Algorithm 2: Predictive Maintenance Algorithm for Control and Automation
Systems (Research question 2)

During the development of Algorithm 1, significant progress has been made with the
completion of the initial steps. Now, let's move on to Steps 3, 4, and 5, which are vital in the
process as can be seen in Fig. 6. These steps focus on identifying an appropriate condition
indicator, detecting anomalies, and raising an alarm for predictive maintenance in the
Industrial Automation and Control System.

Predictive Maintenance Algorithm
|
[ | | | |
Acqulre Data Digital Twin Con.dmon Anomaly Predictive
and System s Indicator : 4
X : Modelling 2 3 Detection Maintenance
Identification Identification

Fig. 6. Predictive Maintenance Algorithm

4.2.1. |Identification of Condition Indicators

During the phase of identifying condition indicators, the primary objective was to select
suitable metrics that play a crucial role in distinguishing between healthy and faulty data
within the Industrial Automation System. The careful selection of condition indicators is
essential as they directly impact the accuracy of decision-making processes. Several condition
indicators were considered for this purpose:

1. Mean Square Error (MSE)
2. Mean Absolute Error (MAE)
3. Standard Deviation

By utilizing these identified condition indicators, thresholds can be established to effectively
detect anomalies within the system. These indicators serve as valuable tools for assessing and
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monitoring the system's performance and identifying any deviations from expected
behaviour. The implementation of appropriate thresholds based on these condition indicators
enables timely detection and intervention for abnormal patterns or outliers in the Industrial
Automation System. This proactive approach to anomaly detection contributes to the
robustness and reliability of the system, allowing for effective decision-making and preventive
maintenance to ensure optimal system performance.

4.2.2. Anomaly Detection

To detect anomalies in the physical system, a comparative analysis should be performed
between the physical system and the Digital Twin. This involved providing identical inputs to
both the physical system and the Digital Twin. The outputs from the physical system should
be recorded and compared with the outputs of the Digital Twin, utilizing the previously
identified condition indicators from Step 4.2.1, along with their respective thresholds.

By evaluating the performance of the physical system against the threshold determined by
the condition indicator, any instances where the performance of the physical system exceeds
the threshold are flagged as alerts. These alerts indicate potential anomalies or deviations
from the expected behaviour of the system, allowing for timely intervention or further
investigation to ensure the system's optimal functioning and reliability.

4.2 .3. Predictive Maintenance

Anomalies detected in the system can be attributed to various factors such as environmental
changes, temperature fluctuations, equipment aging, or faults. Addressing these anomalies
promptly is crucial to prevent equipment failures, as such failures can disrupt advanced
manufacturing operations and pose safety risks to workers and operators. To ensure the timely
identification and resolution of faults, a fault-finding analysis should be conducted when the
performance of the physical system exceeds the safety threshold. This analysis aims to
determine the underlying cause of the anomaly and take appropriate measures to rectify the
issue. By addressing faults promptly, the risk of equipment failure is mitigated, ensuring the
efficiency and safety of the overall industrial processes. Implementing a predictive
maintenance approach, supported by anomaly detection, enables proactive maintenance
actions to be taken based on the detected anomalies. By identifying and addressing potential
issues before they escalate, the system's reliability and uptime are improved, leading to
enhanced productivity and cost savings. Additionally, predictive maintenance helps in
extending the lifespan of critical equipment and optimizing maintenance schedules, thereby
minimizing downtime and maximizing operational efficiency.

In this chapter, two methodologies are presented to address the research objectives outlined
in Chapter 2. The first methodology focuses on the development of a high-fidelity digital twin
model, aiming to accurately represent the complex dynamics of control systems. The second
methodology centres on predictive maintenance techniques, leveraging the insights provided
by the digital twin model to enable proactive maintenance strategies. The next chapter will
further illustrate the practical application of these methodologies through a comprehensive
case study. This case study aims to provide empirical evidence and validate the effectiveness
of the proposed methodologies in a real-world setting.
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Chapter 5: Case Study for ICBBS Robust Digital Twin Modelling and
Predictive Maintenance

In this chapter, a comprehensive case study is presented to demonstrate the practical
application and effectiveness of the methodologies introduced in Chapter 4. Building upon
the methodologies developed in the previous chapter, this case study serves as a real-world
validation of the proposed approaches for high-fidelity digital twin modelling and predictive
maintenance in control systems. By applying the methodologies to an actual industrial
scenario, this research aims to provide empirical evidence of their performance, reliability,
and impact on control systems maintenance.

The proposed frameworks in this chapter were validated using an industrial control system
(Fig. 7) comprising specific hardware and software components. The central component of the
control system was an Omron programmable logic controller (PLC), which played a crucial role
in managing and controlling a 240-volt industrial DC motor. The PLC acted as the brain of the
system, executing programmed instructions, and coordinating various tasks to ensure smooth
motor operation.

Fig. 7. Industrial Control System

To monitor the real-time performance of the motor and record data, an Omron incremental
encoder sensor was employed. This sensor provided precise feedback on the motor's position,
speed, and rotational direction, enabling accurate monitoring and analysis of its behaviour
during operation. For effective motor control, including synchronization and precise
positioning, the control system utilized the Omron MX2 inverter. This inverter served as a
power conversion device, allowing efficient control of the motor's speed and torque output.
Its integration within the system ensured optimal motor performance for diverse industrial
applications.

To facilitate machine automation control, PLC programming, configuration, and simulation,
the control system relied on the Omron Sysmac Studio software. This comprehensive software
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package offered a user-friendly interface and a range of powerful tools for developing and
managing automation programs. It allowed engineers to create and optimize control logic,
simulate system behaviour, and configure the PLC to suit specific application requirements.
The software was executed on an Intel Core i5 Lenovo computer running on the Windows 10
operating system. In addition to the industrial control system, the experiment also involved
the utilization of an Apple device with a 7-core CPU equipped with the M1 chip for Digital Twin
execution and MATLAB deep learning operations. This Apple device provided the necessary
computational power and capabilities to carry out sophisticated simulations, data analysis,
and deep learning tasks related to the Digital Twin implementation.

For more comprehensive information about the hardware components used in the
experiment, Table 7 can be referred to, which outlines the specific details of each component.
Similarly, Table 8 provides detailed information about the software employed, allowing for a
comprehensive understanding of the system's technological infrastructure.

Table 7. System hardware

Hardware Description

Omron  programmable logic NJ 101-1000: complete integration of
controller logic sequence and motion

Omron inverter 3G3AX-MX2-ECT

Omron incremental encoder E6C3-C

Omron industrial slim relay G2RV-SL700

Industrial motor DC 240 volts, 50 Hz

Intel Corei5, Windows 10

Apple 7 core CPU with M1 chip

Table 8. Software used for predictive maintenance algorithm
Software’s Description

SYSMAC STUDIO PLC programming, motor control and
to read encoder feedback signal

MATLAB Digital Twin training and execution

5.1: Algorithm 1: DT model of ICBBS

The 5-step algorithm includes system identification, data collection, artificial neural network
architecture, DT training, validation and testing and DT deployment, which is based on the
methodology presented in Chapter 4.
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5.1.1. System Identification

In the context of system identification, two fundamental principles, the Law of Additivity and
the Law of Homogeneity, were applied to assess the system's linearity and behaviour.
Additivity (Superposition) is a property where the output should be the sum of the responses
generated by each input signal individually. In other words, if the system exhibited
superposition, it indicated linearity. However, during the experimentation, the system's
behaviour did not adhere to the principle of superposition, as the output responses were not
a simple linear summation of the individual input responses.

Homogeneity (Scaling) involves scaling the input signals by a constant factor (scalar) to
observe its effect on the system's output. For a linear system, a proportional change in the
input should result in a proportional change in the output. The observed behaviour of the
system revealed a lack of homogeneity, as changes in the input signal amplitude did not result
in a consistent linear scaling of the output.

Based on these assessments, it was determined that the system did not follow the principles
of superposition and homogeneity. As a result, the system was classified as a non-linear
system, reflecting its complex behaviour in response to input changes.

5.1.2. Data Collection

In this phase, OMRON Sensors played a pivotal role in acquiring essential data. The recorded
data primarily consisted of Pulse Width Modulation (PWM) frequency signals, providing
precise insights into the system's behaviour. The collected data sets exhibited a wide-ranging
diversity, encompassing various scenarios, including healthy data sets, data featuring minor
anomalies, instances with severe anomalies, and data reflecting faulty conditions. This
comprehensive array of data was instrumental in several aspects, serving as valuable input for
the training of artificial neural networks and facilitating rigorous validation procedures for the
proposed algorithms. The details of the number of data sets have been highlighted in Table
8A.

Table 8A. Data set details

ICS condition Number of data sets
Healthy operation 3
Minor anomalies 1
Severe anomalies 1
Faulty operation 1

5.1.3. Artificial Neural Network Architecture

Recurrent Neural Network (NARX) was employed in this research to effectively capture the
intricate behaviour of the ICBBS. To mitigate the risk of overfitting, the network architecture
was intentionally kept simple, taking into consideration the limited variability observed in the
data recorded during step A. The inclusion of a complex structure with small variables could
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have resulted in overfitting, negatively impacting the network's performance. Several
combinations of hyperparameters were systematically tested and validated against the
recorded data. The selected hyperparameters, as presented in Table 9, consistently yielded
the most optimal results in terms of model performance and generalization.

Table 9. Hyperparameters for neural network

Hyperparameter type Numbers
Number of layers 3
Number of hidden layers 1
Neurons in each layer 10
Number of input delay 1:2

Number of feedback delay 1:2

It is important to note that in scenarios where the recorded data exhibits greater complexity
or a higher degree of variability, the addition of extra layers and neurons to the network may
be necessary. This flexibility allows for adjusting the network's capacity to effectively handle
more intricate patterns and capture the full range of system behaviours.

5.1.4. ANN Training, Validation, and Testing

In this research, the network was trained using an open-loop architecture, since real system
data was available for training. To facilitate the training, validation, and testing processes, the
available data was divided into three subsets, as detailed in Table 10. The training of the model
was conducted using the Levenberg-Marquart Backpropagation (LMB) training algorithm. This
algorithm incorporates Levenberg-Marquart optimization techniques to update the weight
and bias values of the network. Specifically, the algorithm utilizes the Jacobian for calculations,
considering the performance metric, which is typically represented as a sum or mean of
squared error.

Table 10. Data division for network development

Phase Data %
Training data set 70%
Validation data set 15%
Test data set 15%

In this research, the Mean Square Error (MSE) was chosen as the performance metric for the
LMB algorithm, following the default implementation provided by MATLAB. It is important to
highlight that separate datasets were used for validation and testing, ensuring independent
evaluations of the trained network's performance. At the 18" epoch, the network
demonstrated satisfactory performance with an MSE of 2.1. This value indicates the average
squared difference between the predicted output and the actual output of the network. The
low MSE suggests that the network was able to accurately approximate the behaviour of the
system based on the available training data.
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Furthermore, it is worth noting that for multi-step ahead prediction, a parallel configuration
is highly recommended. This recommendation arises from the series-parallel architecture's
tendency to generate errors primarily in one-step prediction scenarios [44]. By adopting a
parallel configuration, the network can better handle multi-step predictions and minimize the
accumulation of errors over time. Overall, the training process utilized the LMB algorithm with
MSE as the performance metric, resulting in satisfactory network performance. The adoption
of an open-loop architecture and the appropriate configuration for multi-step ahead
prediction contributed to the accurate approximation of the system's behaviour.

5.1.5. Digital Twin Deployment

The performance of the developed Digital Twin was assessed by comparing its output with
the output of the ICBBS. The obtained results demonstrate that the developed Digital Twin
exhibited effective tracking of the ICBBS's response, particularly during dynamic states. With
its demonstrated performance closely mirroring that of its physical counterpart, the Digital
Twin was ready to be deployed, offering a robust solution for optimizing operations and
ensuring efficient system performance.

5.2: Algorithm 2 for Predictive Maintenance

Once the suitable condition indicator has been identified, the developed Digital Twin from
the previous step can be effectively utilized to detect anomalies.

5.2.1. Condition Indicator

In this study, the Levenberg-Marquart backpropagation (LMB) algorithm was employed to
train the neural network, and the mean squared error (MSE) was selected as the condition
indicator. After the network was trained, its performance was evaluated using unseen data
during the validation phase. The validation error, measured as MSE, was found to be 2.1. This
validated MSE value of 2.1 was established as the threshold alert for detecting anomalies in
subsequent operations. If the performance of the system surpasses this threshold, it serves
as an indication of potential anomalies or deviations from the expected behaviour. This
threshold can be used to trigger appropriate actions for further analysis or intervention,
ensuring proactive maintenance and optimization of the industrial processes.

5.2.2. Anomaly Detection

To evaluate the effectiveness of the condition indicator in detecting anomalies within the
automation system, additional experiments were conducted. These experiments involved
collecting new data sets from the automation system under both healthy and faulty
conditions, utilizing an encoder to record the input and corresponding output in the form of
PWM frequency. The Digital Twin, developed using algorithm 1 and operating in a closed-loop
configuration using a parallel architecture was used to simulate the automation system's
behaviour. The response of the Digital Twin was analysed under different conditions,
specifically in a healthy state and in a faulty state. It was found that the developed Digital
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Twin model was very effectively able to detect anomalies and distinguish between healthy
and abnormal operations.

5.2.3. Predictive Maintenance

The successful detection of anomalies as discussed in the previous section using the proposed
algorithm underscores its robust applicability for predictive maintenance in industrial control
systems. By effectively identifying deviations from expected behaviour, the algorithm
empowers maintenance personnel with timely and actionable insights to address potential
issues proactively, minimizing downtime, optimizing system performance, and ultimately
enhancing the overall reliability and efficiency of industrial control systems.

This chapter presented a case study where the two algorithms proposed in Chapter 4
underwent rigorous validation using real-time sensor data. In the following chapter, the
discussion will centre on the results obtained during the training of the Digital Twin model,
the proposed algorithm's capacity to detect anomalies, quantify anomaly severity and address
the challenge of false positives. Additionally, the chapter will provide an overarching analysis
of the entire research, including the ranking of state-of-the-art approaches.
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Chapter 6: Results and Discussion

In the following chapter, a comprehensive analysis and discussion of the obtained results from
the case study conducted in Chapter 5 will be presented. The case study serves as a critical
evaluation of the methodologies proposed in Chapter 4, which aimed to leverage digital twin
technology for predictive maintenance in control systems. This analysis will provide insights
into the effectiveness and practical implications of the proposed methodologies. To provide a
contextual framework, this chapter will also provide a comparative analysis of the state-of-
the-art approaches discussed in Chapter 3. This analysis will highlight the advantages and
limitations of these existing approaches, laying the foundation for understanding the
innovation and contribution of the proposed methodologies.

Evaluating the performance of a trained neural network is a crucial step in the analysis. The
training record of the network, depicted in Fig. 8, illustrates the relationship between errors
and epochs. Notably, at 18 epochs, the network demonstrated strong performance, achieving
the lowest validation error of 2.15. This indicates that the network successfully learned and
generalized the data. It is common for the error to decrease further with additional training
epochs. However, caution must be exercised as an overfitted network may exhibit an increase
in validation error.
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Fig. 8. ANN Performance Matrix

To further assess the performance of the trained network, it is advisable to generate and
examine a regression plot. Fig. 9 presents the regression plot, which depicts the correlation
between the network output and targets. The plot consists of four distinct sections
representing this relationship during training, validation, testing, and the combined data from
all three sets. Analysing the regression plot can provide insights into the accuracy and
consistency of the network's predictions across different datasets. In each of the plots, the
targets are represented by a dashed line, while the solid line represents the best-fit linear
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regression line that describes the relationship between the network output and the targets.
The inclusion of R-values in the plots provides an indication of the strength of this relationship.
An R-value of 1 suggests a perfect linear relationship, while an R-value of 0 indicates no linear
relationship. In Fig. 9, the R-values for all plots are nearly equal to 1, indicating a highly
accurate fit between the network output and the target values. This suggests that the network
has effectively captured the underlying patterns and trends in the data.
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Fig. 10 provides a time series response that highlights the selected time points for training,
validation, and testing. It also presents the error plotted against time, offering insights into the
performance of the network over the duration of the experiment.
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Fig. 10. Time Series Plot

Additionally, Fig. 11 displays a histogram of the error values, with 20 bins, allowing for a visual
representation of the distribution of errors in the network's predictions.
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Fig. 11. Error Histogram
the input error correlation, illustrating the relationship between errors and the input

sequence can be seen in Fig. 12. The plot provides valuable insights into the performance of
the trained network. It is evident from the graph that the network was effectively trained, as
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most of the correlations between errors and the input sequence lie within the confidence
limit. This indicates that the network has successfully captured and learned the patterns and
dependencies present in the input data. Fig. 13 provides a visual representation of the training
states of the network. This plot showcases the progression and evolution of the network's
performance throughout the training process. By observing the plot, one can gain insights into
how the network's accuracy and error rates change over time, allowing for an assessment of
the network's learning dynamics and convergence.
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The autocorrelation plot in Fig. 14 demonstrates the time-related prediction error. The trained
model exhibited excellent performance, as most of the error correlations are within the
confidence limit and exhibit independence from each other. The deployment of the Digital
Twin (DT) network against the physical system is depicted in Fig. 15. This figure showcases the
ability of the network to accurately track the performance of the physical system, particularly
in dynamic states.
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Fig. 14. Autocorrelation of Error

In the assessment of state-of-the-art anomaly detection methods for real-world scenarios,
various machine learning, deep learning and statistical approaches were evaluated. These
methodologies underwent training using a specific data pattern, as illustrated in Fig. 15. To
assess the effectiveness, diverse datasets were employed, including one with minor anomalies
(Fig. 16), another with severe anomalies (Fig. 17), and one with instances of faulty operation
(Fig. 18). Importantly, all four data sets shared a common input pattern, enabling assessment
of their performance on data with similar characteristics.

All these approaches were implemented using MATLAB’s built-in models, with a link to the
deployment provided in the appendix. Among these methods, the Mahalanobis Distance
method demonstrated exceptional performance, achieving the highest score of 8.44 out of 9.
It not only adeptly detected anomalies but also quantified their severity and precisely
identified their locations in the data. This makes it an excellent choice for detecting anomalies
resembling those in the training data. Following closely, the Local Outlier Factor approach
achieved a score of 8.34. It effectively detected and quantified anomalies, showing accuracy
in identifying anomaly points for both minor and severe cases. However, it had limitations in
detecting a few anomaly points within faulty data, placing it in the second position.
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The One-Class Support Vector Machine approach earned a score of 6.82 and secured the third
rank. While it successfully detected and quantified anomalies, it struggled to identify specific
anomaly points within the data. Consequently, its suitability may be restricted in scenarios
where precise anomaly point identification is crucial for root cause analysis. The Autoencoder,
a deep learning approach, received a score of 4. While it proficiently detected and quantified
anomalies, its limitation in pinpointing individual anomaly points significantly limits its
applicability. This drawback underscores that the Autoencoder is best suited for scenarios
requiring anomaly detection and quantification but falls short in identifying specific anomaly
locations.

The Isolation Forest algorithm, ranking fifth with a score of 2.13, demonstrated limited
effectiveness in detecting minor and severe anomalies. It also lacked the capability to quantify
anomaly severity in these scenarios. Nevertheless, the algorithm exhibited some proficiency
in identifying anomalies within faulty data, making it more suitable for reactive maintenance
rather than predictive maintenance scenarios. Robust Random Cut Forest received a score of
0 due to its inability to detect any anomaly points within the research dataset, despite using
advanced models in MATLAB. These rankings provide a clear comparison of the most effective
methodologies, aiding manufacturing industries in informed decision-making regarding the
adoption of suitable anomaly detection approaches tailored to specific industrial needs.

However, a significant challenge arose when applying these approaches to unseen healthy
data patterns (Fig. 19). Notably, a high Mean Squared Error (MSE) was observed, signifying the
misclassification of new, unseen healthy data as anomalies and faulty instances. This indicates
that these evaluated approaches struggled to distinguish between normal and faulty
operations, resulting in a substantial number of false positives. Consequently, these
limitations render them unsuitable for operations involving systems and devices operating on
diverse patterns, especially in advanced manufacturing environments.
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Furthermore, the first Digital Twin model deployment was made against the healthy output
of the ICS as can be seen in Fig. 19. The recorded MSE was 2.0 which was taken as a condition
indicator to locate anomalies in new unseen data. It's crucial to note that the training data
used for the DT was entirely distinct from the data encompassing healthy instances, minor
anomalies, severe anomalies, and faulty operations. With 780 instances, the training data
exhibited unique patterns compared to those shown in other figures. When the system
experienced a minor anomaly, as depicted in Fig. 16, the detected error was 2.4 (0.3 above
the threshold). This demonstrates the effectiveness of the proposed algorithm in detecting
anomalies in distinct patterns.
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To further evaluate the DT’s ability to quantify the level of anomaly, its performance was
compared when the system encountered severe anomalies as can be seen in Fig. 17 and faulty
conditions in Fig. 18. The MSE observed for severe anomalies was 3.4 (1.3 above the
threshold), while for faulty conditions, it was 5.4 (3.3 above the threshold). These results
clearly indicate that the proposed algorithm not only detected anomalies but also accurately
quantified their severity. To further assess the DT’s capability in mitigating false positives,
additional healthy data were used (Fig. 15). The observed MSE was 2.1 which clearly did not
cross the identified alert threshold as well.
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Notably, despite the significant differences in training patterns and instances, the proposed
algorithm outperformed state-of-the-art approaches with 100 % accuracy in anomaly
detection, quantification, and mitigation of false positives on the recorded data as can be seen
in Fig. 20. The trained digital twin exhibits a high level of accuracy, closely resembling the
performance of its physical counterpart.

It is also important to acknowledge that a slight deviation in performance can be observed
due to the presence of noise in the raw data recorded from the physical system. This noise
makes it challenging to use the trained DT model to detect the location of the anomaly points
in the data. To further enhance the accuracy of the DT, incorporating noise filtering techniques
in real-world applications within industries can be beneficial. By implementing such
techniques, the impact of noise on the performance of the DT can be mitigated, enabling more
precise identification of anomaly points in the data. Signal filtering techniques, such as low
pass and high pass filters commonly used in signal processing, offer significant benefits. Low-
pass filters are effective in attenuating high-frequency noise, enabling the extraction of
important low-frequency signals that reflect the system's behaviour. Conversely, high-pass
filters eliminate low-frequency noise, enabling the identification of rapid changes and
transient phenomena. By carefully selecting and configuring these filters, the impact of noise
on the digital twin's training data can be minimized. Another valuable tool for data refinement
is the MATLAB smoothing toolbox, which provides various smoothing algorithms. For
example, the moving average filtering computes the average of neighbouring data points,
reducing high-frequency noise while preserving underlying trends. On the other hand,
Savitzky-Golay filtering utilizes polynomial regression to estimate smooth curves from noisy
data, effectively suppressing noise while retaining significant signal features. The
performance of the trained DT model on filtered data can be seen in Fig. 18. The orange line
represents the output from the DT while the blue line represents the filtered output of the
industrial control system using a low pass filter. It can be clearly seen that the performance
accuracy of the trained DT has highly increased when compared with filtered data.
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Fig. 18. Digital Twin trained on filtered data.

Nevertheless, it is crucial to emphasize that the primary aim of this research was to develop
and train the model on raw data, considering its prevalence and significance in industrial
settings. Raw data serves as a valuable source of information in various industries, providing
insights into the behaviour and performance of physical systems. By focusing on raw data, this
research aligns with real-world practices and facilitates the direct applicability of the trained
DT model within industry environments.
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Chapter 7: Conclusion

In conclusion, this research has highlighted the immense potential of industrial control
systems (ICS) in the context of Industry 4.0 and advanced manufacturing. ICS play a pivotal
role as key enablers, offering essential capabilities such as data collection, automation, and
analysis, which are crucial for improving product quality and optimizing manufacturing
processes. However, the challenge of control system failures poses significant risks, including
potential catastrophic effects. The failure of a control system not only disrupts and slows down
the advanced manufacturing process but can also result in a substantial loss in overall
production and pose serious risks to the safety of the operators operating the plant. The
consequences of control system failures can range from financial setbacks due to downtime
and production losses to severe injuries or fatalities for the operators. To address this
challenge, the utilization of digital twin technology for predictive maintenance algorithms in
ICS emerges as a promising approach. By leveraging the power of digital twins, virtual replicas
of physical systems, organizations can proactively identify and prevent anomalies, ensuring
the smooth operation of control systems and minimizing the risks associated with failures.

This research significantly contributes to the field by presenting innovative solutions and
methodologies, which not only fill existing research gaps but also pave the way for more
comprehensive studies in the future. A notable contribution of this research is the
development of a novel Digital Twin (DT) algorithm tailored explicitly for Industrial Control
Black Box Systems (ICBBS). This pioneering approach fills a critical void in the literature and
lays a robust foundation for future research endeavours in this specialized domain. In terms
of algorithm novelty, this research introduces the use of the NARX model. Unlike previous
studies that primarily relied on simulation data for NARX with limited practical applicability,
this research meticulously adjusted hyperparameters and employed optimization algorithms.

Another distinct aspect of this research is its novel approach to data utilization. Rather than
relying on online data or data generated through simulations, this research utilized six distinct
real-world datasets. These datasets provide a comprehensive understanding of system
behaviour over an entire year, encompassing various seasons and scenarios. This data
diversity is exceptionally rare in the existing literature. Importantly, all experiments were
conducted exclusively on raw data, emphasizing real-world applicability and data integrity.

This research further extends its impact by addressing the scarcity of studies focused on
quantifying anomaly severity and effective false-positive mitigation within ICS. Notably, a key
novelty of this study is the utilization of a novel case study for anomaly detection,
guantification, and false-positive mitigation. The case study serves as a crucial component in
evaluating the developed algorithms. It provides a real-world context and datasets that are
often lacking in existing research. This novel case study encompasses a wide range of real data
sets, including healthy system states, minor anomalies, severe anomalies, and faulty data
patterns, making it an asset in enhancing the reliability of anomaly detection within the ICS
domain.

Another significant and pioneering contribution of this research is the comprehensive

comparison of state-of-the-art algorithms. These approaches underwent rigorous assessment
and validation against six real-world datasets, covering anomaly detection, quantification, and

48



real positive mitigation within ICS. Furthermore, this research introduced a novel ranking
system to evaluate the performance of these approaches based on their application to real-
world datasets. It's important to note that this research is ground-breaking in its scope and
impact. No prior study has ventured into such a diverse range, utilizing as many real-world
datasets for performance assessment. This ground-breaking research significantly advances
the state of the field.

The proposed algorithm's performance was highly significant, achieving unparalleled accuracy
and efficiency. With the data set recorded from the industrial control system, the algorithms
achieved 100% accuracy, not only detecting anomalies and quantifying their severity but also
demonstrating robust generalization capabilities by accurately classifying the system's
condition as healthy or faulty, even on unseen data patterns. This validation process involved
comprehensive datasets recorded during different operational scenarios, including periods
when the system was in both healthy and faulty conditions.

The importance of condition monitoring in the industry cannot be overstated. Poor
monitoring practices have been shown to contribute to dire consequences, with research
indicating that approximately 30% of reported fatalities in the manufacturing environment are
directly related to inadequate condition monitoring. Moreover, equipment failures alone can
account for up to 60% of total manufacturing costs for companies, highlighting the significant
financial burden resulting from insufficient monitoring and maintenance practices. While
digital twin technology holds immense potential for improving condition monitoring, the
challenge lies in the availability of comprehensive and high-quality data, which limits
organizations from fully capitalizing on its benefits.

However, the algorithms proposed in this research address these challenges head-on. They
not only tackle the data availability issue but also pave the way for organizations to leverage
the full potential of digital twin technology in condition monitoring. By implementing these
algorithms, organizations will gain extraordinary advantages, including cost savings, enhanced
worker safety, and the achievement of smooth advanced manufacturing processes. These
algorithms provide a comprehensive and reliable solution, empowering organizations to
proactively monitor the health of their industrial control systems. They can be used to
optimize maintenance strategies, enable real-time anomaly detection, prevent equipment
failures, and safeguard the well-being of the workforce. This research demonstrates a
noteworthy progression in condition monitoring, enabling organizations to unlock substantial
operational efficiencies and achieve superior performance in the realm of advanced
manufacturing.
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Chapter 8: Future Direction

Prescriptive maintenance represents a crucial advancement in maintenance strategies that
build upon the foundation of predictive maintenance. While both predictive and prescriptive
maintenance play essential roles in optimizing asset performance, they differ in their scope
and approach. Predictive maintenance focuses on utilizing historical data, advanced analytics,
and machine learning algorithms to predict when equipment failures are likely to occur. By
analysing patterns and trends in data, predictive maintenance algorithms can identify
potential anomalies or deviations from normal behaviour, providing valuable insights into the
health of assets. This enables organizations to schedule maintenance activities proactively,
minimizing unexpected breakdowns and optimizing maintenance resources.

Prescriptive maintenance takes it a step further by providing specific recommendations on
how to prevent or address the predicted failures. It leverages real-time data and advanced
analytics techniques to continuously monitor asset performance and identify potential issues.
Based on this information, prescriptive maintenance algorithms generate actionable
recommendations for maintenance activities, guiding organizations on the most effective
actions to take. Despite the advancements in predictive maintenance, the exploration of
prescriptive maintenance has been relatively limited. Given the vast potential and critical
significance of prescriptive maintenance, it is evident that further research in this area is
imperative.
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1%t conference paper has been published in IEEE. The title of the paper is “Artificial Intelligence
Enabled Digital Twin for Predictive Maintenance in Industrial Automation System: A Novel
Framework and Case Study”. Below are the details of the paper and the link.

Sponsored: IEEE Industrial Electronic Society

Host: Loughborough University

Location: United Kingdom

Date: 15 March — 17" March

Link: https://ieeexplore.ieee.org/document/10101971

2"d Conference Paper

The second conference has been accepted for publication. The title of the paper is “Machine
Learning Enabled Digital Twin for Industrial Control Black Box System: A Novel Framework and
Case Study”.

Sponsored: IEEE Robotics and Automation Society
Host: Aston University

Location: United Kingdom

Date: 30" August- 1%t September

Journal

The journal paper has been submitted to IEEE Transactions on Industrial Informatics. The title
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Appendices

Appendix A: Implementation Details

In this appendix, we provide additional information on the implementation of the NARX model
and the comparison of state-of-the-art approaches using MATLAB. The NARX model execution
was carried out using MATLAB's Deep Learning Toolbox. Also, another way to implement NARX
is by using MATLAB APP “ nnstart”. Below is the link for the app.

(https://au.mathworks.com/help/deeplearning/ref/nnstart.html)

Additionally, MATLAB models were employed to compare state-of-the-art approaches. The
models were used using the following links.

(https://au.mathworks.com/help/stats/anomaly-detection.html)

Appendix B: PLC Programming and Data Recording

In this appendix, we provide additional information on the programming of the Programmable
Logic Controller (PLC) and the data recording process using SYSMAC Studio

The PLC programming involved the utilization of Function Block, ST Logic (Structured Text),
and Ladder Logic. Each programming language served specific purposes in controlling the
PLC's behaviour and executing various tasks within the system. The data were recorded using
SYSMAC Studio of Omron.

Appendix C: Digital Twin Training

In order to train the digital twin model, a dataset comprising 780 seconds of healthy data was
utilized. This dataset was carefully selected to represent a variety of normal operating
conditions and captured various parameters relevant to the system under consideration. The
inclusion of such diverse and representative data is crucial for developing an accurate and
robust digital twin model.

Appendix D: Algorithm Validation Data
The data used for algorithm validation was collected from an industrial control system located

at the Federation University Churchill campus. The industrial control system served as the
testbed for evaluating the algorithm's effectiveness in detecting anomalies.
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