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Cell-Free Massive MIMO
for Wireless Federated Learning

Tung T. Vu, Duy T. Ngo, Nguyen H. Tran, Hien Quoc Ngo, Minh N. Dao, and Richard H. Middleton

Abstract—This paper proposes a novel scheme for cell-free
massive multiple-input multiple-output (CFmMIMO) networks
to support any federated learning (FL) framework. This scheme
allows each instead of all the iterations of the FL framework
to happen in a large-scale coherence time to guarantee a stable
operation of an FL process. To show how to optimize the FL
performance using this proposed scheme, we consider an existing
FL framework as an example and target FL training time
minimization for this framework. An optimization problem is
then formulated to jointly optimize the local accuracy, transmit
power, data rate, and users’ processing frequency. This mixed-
timescale stochastic nonconvex problem captures the complex
interactions among the training time, and transmission and
computation of training updates of one FL process. By employing
the online successive convex approximation approach, we develop
a new algorithm to solve the formulated problem with proven
convergence to the neighbourhood of its stationary points. Our
numerical results confirm that the presented joint design reduces
the training time by up to 55% over baseline approaches. They
also show that CFmMIMO here requires the lowest training time
for FL processes compared with cell-free time-division multiple
access massive MIMO and collocated massive MIMO.

Index Terms—Cell-free massive MIMO, federated learning.

I. INTRODUCTION

The use of machine learning (ML) techniques in telecom-
munications industry has been growing dramatically in recent
years [1], [2]. One reason for this trend is the fast growing
number of mobile devices, wearable devices and autonomous
vehicles. They are generating a vast amount of data by
using in-built sensors, e.g., microphones, GPS and camera,
for critical applications such as traffic navigation, indoor
localization, image recognition, natural language processing,
and augmented reality [3]. In addition, the computational capa-
bilities of these devices also grow significantly with dedicated
hardware architecture and computing engines, e.g., the energy-
efficient Qualcomm Hexagon Vector eXtensions on Snap-
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dragon 835 [4]. On-device artificial intelligence (AI) capabil-
ities are predicted to be available on 80% of all smartphones
by 2022 [5]. It is therefore critical for telecommunications
operators to start investigating into a future communications
system that efficiently utilizes the empowered computation
resources from mobile devices to solve ML problems.

The typical ML framework used in the current telecom-
munications systems requires a cloud center to store and
process raw data collected by the user equipment (UEs).
However, such a centralized structure fails to support real-
time applications because of its high latency [6]. The concept
of mobile edge computing is introduced to process data at
the edge nodes instead of the cloud center [7], [8]. Since
the computational capability of mobile devices is growing
noticeably, it is possible to even push the network computation
further to the mobile device level [9], [10]. On the other hand,
serious concerns about data privacy have recently been raised
due to data being processed by third-party companies, e.g.,
Facebook, Apple. This urgently calls for a new class of ML
frameworks that not only exploit the computational resources
of the UEs for ML applications but also ensure data privacy.

A promising candidate for such ML frameworks is the
recently developed Federated Learning (FL) [9], [11]. As
shown in Fig. 1, an FL process is an iterative process in which
the UEs use their local training data to compute local model
training updates, followed by sending the updates to a central
server. The central server then aggregates these updates to
compute the global training update, which is then sent back to
the UEs to further assist their local update computation. This
iterative process terminates when a certain learning accuracy
level is attained. Data privacy is protected by not sharing
the local training data, but only the local training updates
computed at the UEs using local computational resources.
Uploading only the local training updates to the central server
incurs a significantly lower delay, compared to uploading a
large amount of raw data. This distributed approach facilitates
a large-scale model training and more flexible data collection,
albeit at the expense of UEs’ computational resources [10].

With all the promising advantages listed above, FL has
attracted much attention from both developer and researcher
communities [10], [12]–[17]. In [12], an FL algorithm for
keyboard prediction on smartphones is developed by Google.
[13] target improving the performance of the general FL
algorithms, while [10], [14]–[17] concentrate on optimizing
the performance of FL algorithms used in wireless networks.
In particular, [13] proposes a new compression framework
for a communication-efficient FL system. [10] aims to obtain
the best trade-off between FL training time and UE energy
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Fig. 1. Illustration of an FL process over communication networks and
CFmMIMO network model used to support FL.

consumption. [14] proposes an incentive mechanism that en-
courages the UEs with high-quality data to participate in
FL systems. [15] introduces a control algorithm to achieve
the best trade-off between the number of local updates and
that of global updates for a given resource budget. A joint
device selection and beamforming design is proposed in [16]
to enhance the performance of FL. [17] proposes a joint design
of user selection, power control and subchannel allocation for
minimizing the loss function of FL.

This paper investigates how to implement FL in a wireless
network. It is worth noting that the existing works [10],
[16] rely on an impractical assumption that the channel state
information (CSI) remains unchanged during the whole FL
process. In practice however, the channel changes in the
order of milliseconds; and as such, certain system parameters
for FL performance optimization, e.g., data rates and power
control, would have become obsolete even before the FL
process terminates. In addition, it might not be most efficient
to use orthogonal multiplexing approaches, e.g., orthogonal
frequency-division multiple access (OFDMA) [17] and time-
division multiple access (TDMA) [10], for UEs to transmit
their local updates. With a large number of UEs, the total
training time could be significantly prolonged. To both deal
with the wireless channel dynamics and to serve UEs at the
same time and in the same frequency bands, a new wireless
network structure that supports FL is called for.

In this work, we propose using cell-free massive multiple-
input multiple-output (CFmMIMO) [18], [19] for FL in a
wireless environment. Here, a central processing unit (CPU)
(i.e., the central server) is connected to a large number of
access point (APs) via backhaul links. These APs then simulta-
neously serve UEs via wireless links using the same frequency
bands with the CSI acquired via uplink (UL) training pilots.
An important characteristic of massive MIMO is channel
hardening [20], i.e., the effective channel gain at the UEs is
close to its expected value—a known deterministic constant
[19]. As such, the channels are reasonably stable during one

large-scale coherence time T̃c
1. The channel dynamics due

to small-scale fading thus have negligible effects on the FL
processes. In addition, a CFmMIMO network also provides
a high probability of coverage, making the FL processes less
prone to the unfavorable UE links.

Our research contributions are summarized as follows.
• We propose, for the first time, a scheme for CFmMIMO

networks to support any FL framework. In this scheme,
any iterative algorithm can be developed to optimize the
FL performance before the FL process is executed. Each
instead of all iterations of this FL optimization algorithm
or the FL process happens within one T̃c in order to
guarantee channel stability during its operation. In each
iteration of the FL process, we propose using the APs as
relays to transmit the training updates between the CPU
and UEs. Doing so allows any beamforming/filtering
design to be applied to the APs in order to enhance the
performance of training update transmission.

• To show how to optimize the FL performance using the
proposed scheme, we consider an existing FL framework
[21] as an example and target the key performance metric
of “training time minimization”. We formulate a mixed-
timescale stochastic nonconvex optimization problem that
minimizes the time of one FL process. The formulated
problem captures the complex interactions among the
FL training time, and transmission and computation of
FL training updates in a CFmMIMO network. Here,
a conjugate beamforming/matched filtering scheme is
applied to the APs for ease of implementation. The local
accuracy, power control, data rate and UE’s processing
frequency are jointly designed, subject to the practical
constraints on UEs’ energy consumption and imperfect
channel estimation.

• Utilizing the general framework in [22], we propose a
new algorithm that is proven to converge to at least the
neighborhood of the stationary points of the formulated
problem. Here, the coupling among the variables makes it
challenging to develop a specific algorithm that satisfies
all the strict conditions stated in the general framework
of [22]. It is also noted that our algorithm only requires
channel stability in each but not all iterations. This
important feature ensures the problem and its solution
remain up-to-date and valid during the running time of
the algorithm, despite the channel variations.

• Simulation results verify the convergence of the proposed
algorithm, and show that our solution reduces the training
time by up to 55% compared with the baseline schemes.
They further confirm that CFmMIMO offers the low-
est training time compared to cell-free TDMA massive
MIMO and collocated massive MIMO.

Paper Organization and Notation: The rest of this paper is
organized as follows. Section II proposes a novel scheme for
a CFmMIMO network to support a general FL framework.

1During one large-scale coherence time T̃c, the large-scale fading co-
efficients are reasonably invariant. The value of T̃c can be empirically
measured, in the same way for small-scale fading measurement. For indoor
communications, the large-scale coherence time can be at least 40 small-scale
fading coherence time [19], and it has a time order of seconds.
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Section III introduces a specific example of the general FL
framework considered in this paper. Section IV presents the
system model and assumptions. Section V formulates the
FL training time minimization problem, whereas Section VI
proposes a new algorithm to solve the formulated problem.
For comparison, Section VII introduces cell-free TDMA and
collocated massive MIMO systems to also support the con-
sidered FL framework. Section VIII verifies the performance
of the developed algorithm through comprehensive numerical
examples. Finally, Section IX concludes the paper.

In this paper, boldfaced symbols are used for vectors and
capitalized boldfaced symbols for matrices. XXX∗ and XXXH are
the conjugate and conjugate transposition of a matrix XXX ,
respectively. Rd is a space where its elements are real vectors
with length d. 〈xxx,yyy〉 means the inner product of vectors xxx
and yyy. ||.|| denotes the `2-norm function. CN (µµµ,QQQ) denotes
the circularly symmetric complex Gaussian distribution with
mean µµµ and covariance QQQ. ∇g is the gradient of a function g.
E{x} denotes the expected value of a random variable x.

II. PROPOSED SCHEME FOR CFMMIMO NETWORKS TO
SUPPORT FL

A. The General FL Framework

A global ML problem is solved at a central server with
a global training data set partitioned over a number of par-
ticipating clients. Each client trains their local model by an
arbitrary learning algorithm. Let K = {1, ...,K} be the set of
clients and Dk the size of the local data stored at client k.
Then D̃ =

∑
k∈KDk is the size of the global training data.

Denote by D = {1, ..., D̃} and Dk = {1, ..., Dk} the index
sets of the global data samples and the local data samples at a
client k, respectively. In a typical supervised learning, a data
sample i ∈ D is defined as an input-output pair {xxxi ∈ Rd, yi}.

For λ > 0, the general global ML problem can be posed as
the following minimization [11], [21]

min
www∈Rd

J(www) ,
1

D̃

∑
i∈D

fi(www) + λg(www), (1)

where fi(www) is the loss function at data sample i and g(www) is a
regularization term with a model parameter www. Some popular
examples are fi(www) = 1

2 (xxxTi www−yi)2 for a linear regression
problem and fi(www) = {0, 1 − yi xxx

T
i www}, yi ∈ {−1, 1} for a

support vector machine. Here, the learning problem is to find
www that characterizes the output yi with the loss function fi(www)
for a given input xxxi. Note that fi(www) is not necessarily convex.

In a general FL framework to solve the general ML problem
(1), this problem is decomposed into K separate local ML
problems that are solved at K clients in parallel. For ease of
presentation, we make the following definitions.

Definition 1. “Global DL training update” is the information
sent from the central server to the clients. Similarly, “global
UL training updates” are those from the clients to the central
server.

The general FL framework is described in Algorithm 1. Each
iteration of Algorithm 1 consists the four key steps (S1)-(S4).

Definition 2. “An FL process” is defined as a full execution
of Algorithm 1.

Algorithm 1 A general FL framework
1: Input: n = 1, an initial global DL training update
2: repeat
3: (S1) The central server sends the global DL training

update to the UEs.
4: for k ∈ K in parallel do
5: (S2) Client k updates and solves its local ML problem

on its local data set and then computes the global UL
training update

6: (S3) Client k sends its computed global UL training
update to the central server

7: end for
8: (S4) The central server computes the global DL training

update by aggregating the received UL training updates.
9: Update n = n+ 1

10: until convergence with the global accuracy ε

Remark 1. The designs of local ML problems at the clients,
the global DL/UL training updates, and the types of aggre-
gation of training updates at the central server are different
according to the different designs of FL frameworks for
different types of objective functions due to different ML
applications [21], [23]–[27].

B. Proposed Cell-Free Massive MIMO Network Structure to
Support the General FL Framework

Here, we propose using the CFmMIMO network structure
[19] illustrated in Fig. 1 to support the general FL framework
discussed above. In this structure, a central processing unit
(CPU) is connected to a set of access points (APs) M =
{1, ...,M} via backhaul links with sufficient capacities. These
APs serve a given set K of participating UEs via wireless
access links at the same time and in the same frequency
bands2. The APs and UEs are each equipped with a single
antenna. The CPU and UEs act as the central server and the
clients in the general FL framework, respectively. The APs are
used to relay the training updates between the CPU and the
UEs
Remark 2. Both the AP and UEs can be considered as the
clients in the general FL framework. In this paper, we choose
the UEs to be the clients instead of the APs [10]. By doing so,
data privacy is more protected since raw data does not have to
be shared over wireless networks. Moreover, the computational
resource of the UEs can be empowered with new computing
engines such as Snapdragon 835 [4]. It is possible to push the
ML tasks further to the UEs [9], [10].

C. Proposed Scheme for a CFmMIMO to Support the General
FL framework

Now, to realize an FL process in the considered CFmMIMO
network structure, we propose a general scheme shown in
Fig. 2. As seen from the figure, we divide the time period

2In general, since the UEs are geographically distributed, some user
may loss the connectivity, and hence, cannot participate in the FL process.
However, one of the main strong property of CFmMIMO is that, with very
high probability, it can provide uniformly good service for all users in the
networks [19]. In the other words, in CFmMIMO, the connectivity probability
of each user is very high. Therefore, in the paper, for simplicity, we assume
that all UEs participate in the FL process.
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during which the statistics of large-scale fading is stable into
multiple time intervals. The first interval of “FL performance
optimization” is used for optimizing the performance of FL.
The remaining intervals are reserved for the FL process; hence,
termed as “FL process” intervals.

1) Optimizing the performance of FL: In the “FL perfor-
mance optimization” interval, any algorithms can be developed
to optimize the performance of FL before the FL processes
are executed. Here, we denote by “system parameters” the
parameters that are designed by the FL optimization algorithm.
These parameters are grouped into short-term and long-term
parameters. The short-term parameters change in the timescale
of large-scale coherence times, whereas the long-term parame-
ters the statistics of large-scale fading. In each iteration of the
optimization algorithm, the short-term parameters are designed
in the short-term optimization (STO) time blocks, whereas
the long-term parameters in the long-term optimization (LTO)
time blocks. As a result of the channel hardening effect
in massive MIMO, the wireless channel remains unchanged
during one large-scale coherence time T̃c. In practice, the
completion time of the optimization algorithm can be larger
than T̃c. Therefore, we insist that only one iteration of the
algorithm is to happen within T̃c.

2) Implementing the FL process: In the “FL process”
intervals, the FL process is executed with the long-term
parameters obtained from the “FL performance optimization”
interval. The short-term parameters are optimized in the STO
time block to enhance the performance of training update
transmission before each iteration of the FL process. Since
the completion time of the FL process can be larger than T̃c,
we insist that both STO and “one iteration of the FL process”
time blocks are to happen in one T̃c. Here, we note that the
results of the LTO time blocks remain unchanged for several
FL process, while the results of the STO time blocks are
invariant only in one iteration of an FL process. Therefore,
after the “FL performance optimization” step is executed, only
the results of the LTO time block are used in FL processes.
In each iteration of an FL process, the results of the STO
time block are not the results of the STO time block in the
“FL performance optimization” step, but rather are computed
by the same method used for the STO time block in the “FL
performance optimization” step.

3) Implementing each iteration of the FL process: Fig. 3
shows the time block of “one iteration of the FL process”,
in which the intervals of the four key steps (S1)-(S4) to
implement each iteration of the FL process by the CFmMIMO
network model are illustrated. Here, the interval of Step (S1)
in Algorithm 1 consists one interval of “DL training update
transmission (DLTUT) via backhaul links” from the CPU to
the APs, and one interval of “DLTUT via wireless links” from
the APs to the UEs. The interval of Step (S3) includes one
interval of “UL training udpate transmission (ULTUT) via
wireless links” from the UEs to the APs, and one interval
of “ULTUT via backhaul links” from the APs to the CPU.

As also seen from Fig. 3, we split each time block of
“DLTUT via wireless links” or “ULTUT via wireless links”
into multiple intervals. The intervals of “UL training” is
used for channel estimation. The remaining intervals are used

for DL/UL training update transmission3. In these “DLTUT”
or “ULTUT” intervals, any beamforming/filtering design can
be applied to optimize the performance of training update
transmission. Here, we insist that the pair of “UL training”
and “DLTUT”/“ULTUT” intervals happen in one small-scale
coherence time Tc in order to adapt to the variation of small-
scale fading4. In addition, the data size of training updates
may be larger than the amount of data that can be transmitted
in Tc. As such, there may be one or several “DLTUT” or
“ULTUT” intervals in each “DLTUT via wireless links” or
“ULTUT via wireless links” time block in order to complete
the transmission of one global DL/UL training update.
Remark 3. The proposed CFmMIMO network model in Sec-
tion II-B and the proposed scheme in Section II-C can be used
to support any version of the general FL framework to solve
any global ML problem. This scheme only requires developing
specific algorithms to optimize the performance of specific FL
frameworks. In the following, we consider a specific example
of the general FL framework and investigate an algorithm to
optimize the FL performance of this framework.

III. A SPECIFIC EXAMPLE OF THE GENERAL FL
FRAMEWORK

Given the proposed framework in Section II, this section
considers a specific example of the general FL framework to
show how the performance of an FL process can be opti-
mized in the latter sections. In particular, the FL optimization
problem for this example is introduced in Section V, and the
algorithms to solve this problem are proposed in Section VI.

Because of all the potential advantages offered by FL, many
versions [21], [23]–[27] of the general FL framework have so
far been studied despite research on FL is still in its infancy.
Here, we consider an existing FL framework of [21] which
is briefly introduced as follows. In this FL framework, the
considered loss function fi is convex and the dual problem of
(1) is written as

max
ααα∈RD̃

JD̃(ααα) , 1

D̃

∑
i∈D
−f∗i (−ααα)− λg∗(χχχ(ααα)), (2)

which is a special case of the Fenchel duality [21], where
f∗i and g∗ are the convex conjugate functions of fi and g,
respectively; ααα is a dual variable; χχχ(ααα) = 1

λD̃
XXXααα; XXX =

[xxx1, ...,xxxD̃] ∈ Rd×D̃. It can be shown that if ααα∗ is an optimal
solution of (2), then www(ααα∗) = ∇g∗

(
1

λD̃
XXXααα∗

)
is the optimal

solution of (1). This property allows handling the dual variable
ααα ∈ RD̃ instead of www ∈ Rd. Since each αi corresponds to each
data sample i, ααα can be distributed in the same way that data
are partitioned for the K clients.

3The proposed scheme above focuses only on support FL. Therefore, in
each small-scale coherence time, all the times not used to estimate the channel
are used for transmitting training updates. The scheme that supports FL and
data transmission at the same time is left for future works.

4In this work, we consider time-division duplexing (TDD) where channels
are first estimated at the APs via uplink channel estimation. Owing to the
channel reciprocity property in massive MIMO, these channel estimates will
then be used for: (i) precoding the data symbols in the downlink data
transmission, and (ii) used for combining the received signals in the uplink
data transmission. Moreover, there is no need for downlink channel estimation
because of the channel hardening property in massive MIMO systems. This
transmission protocol is widely used in the massive MIMO literature (see,
e.g., [28]).
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Let (φφφ)i be the i-th element of vector φφφ and (XXX)i be the
i-th column vector of matrix XXX . For any φφφ ∈ RD̃, denote
by φφφ[k] ∈ RD̃ the vector for device k, i.e., (φφφ[k])i = (φφφ)i if
i ∈ Dk and 0 otherwise. Similarly, for any XXX ∈ Rd×D̃, denote
by XXX [k] ∈ Rd×D̃ the matrix for device k, i.e., (XXX [k])i = (XXX)i
if i ∈ Dk if i ∈ Dk and 000 otherwise. The local problem at
each client k is then assigned to find the optimal change φφφ[k]
in the local dual variable ααα[k], for a given previous ααα as

max
φφφ[k]∈RD̃

Jk(φφφ[k],χχχ(ααα),ααα[k]), (3)

where
Jk(φφφ[k],χχχ(ααα),ααα[k])

= − 1
K g
∗(χχχ(ααα))−

〈
1

D̃
XXXT

[k]∇g∗(χχχ(ααα)),φφφ[k]

〉
− λ

2

∥∥∥ 1

λD̃
XXX [k]φφφ[k]

∥∥∥2 − 1

D̃

∑
i∈DDDk

f∗i (−(ααα[k])i − (φφφ[k])i) (4)

is the quadratic approximation of JD̃ at the dual variable
(ααα[k] +φφφ[k]). Here, the only information shared between the
clients and the central server is the change in χχχ.

At iteration n, each client k ∈ K solves (3) by an arbitrary
iterative algorithm with a local accuracy level of θ in order
to obtain its optimal solution φφφ∗[k]. The local dual variable is
updated as

ααα
(n+1)
[k] = ααα

(n)
[k] +φφφ∗[k] . (5)

Each client k ∈ K then shares its local change in χχχ(n), i.e.,

∆χχχ
(n)
k = 1

λD̃
XXX [k]φφφ

∗
[k], (6)

to the central server. The central server aggregates the local
information ∆χχχ

(n)
k received from all the clients and updates

χχχ as
χχχ(n+1) = χχχ(n) + 1

K∆χχχ
(n)
k . (7)

χχχ(n+1) is finally sent back to the clients to solve (3). This
process will terminate when a global accuracy level of ε is
reached. The FL framework described above is summarized

Algorithm 2 FL framework [21]

1: Input: n = 1, an initial point ααα(0) and an initial global
DL training update χχχ(0) = 1

λD̃
XXXααα(0)

2: repeat
3: (S1) The CPU sends χχχ(n) to the UEs
4: for k ∈ K in parallel do
5: (S2) UE k solves (3) by an iterative algorithm with

a local accuracy θ to obtain an optimal solution
φφφ∗[k], and then updates the global UL training update
∆χχχ

(n)
k by (6)

6: (S3) UE k sends ∆χχχ
(n)
k to the CPU

7: end for
8: (S4) The CPU updates χχχ(n+1) as (7) and sends it back

to the UEs
9: Update n = n+ 1

10: until convergence with the global accuracy ε

in Algorithm 2. Each iteration of Algorithm 2 also consists of
four key steps (S1)-(S4) as that of Algorithm 1.

We assume that each client k ∈ K uses optimization
algorithms such as stochastic average gradient (SAG) and
stochastic variance reduced gradient (SVRG) to solve (3) with
a local accuracy level of θ. The number of local iterations is
then [26]

L(θ) = ν log( 1
θ ), (8)

where ν > 0 depends on the data size and structure of the local
problem [26]. On the other hand, for strongly convex objective
functions and the global accuracy level of ε, the number of
global iterations are given by [21]

G(θ) =
ϑ log

(
1
ε

)
1− θ

, (9)

where ϑ > 0 is a factor that depends on the characteristic and
size of the whole data set [21, Theorem 4.2]. Here, we assume
that the characteristic and size of the whole data set does not
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change over the FL processes. Therefore, ϑ is constant and
known [10].
Remark 4. In more complex ML models such as deep neural
networks, the loss function fi is usually non-convex. There-
fore, instead of the framework in [21], more advanced FL
frameworks are needed. In this paper, we choose to consider
the FL framework in [21] for simpler ML models because it
provides a clear relationship (9) between the number of global
training updates and the local accuracy for ease of optimizing
FL performance (see the next sections). Such a clear rela-
tionship is hard to find in the advanced FL frameworks with
non-convex loss functions.

IV. DETAILED SYSTEM MODEL TO SUPPORT FL

This section details the CFmMIMO system model used
to support the transmission and computation of the training
updates in each iteration of the FL process (see Fig. 3).
A. Steps (S1) and (S3) in Each Iteration of the FL Process:
Model of Training Update Transmission

1) UL channel estimation: Denote by τc = TcBc the
number of samples of each coherence block, where Bc the
coherence bandwidth. UL pilot sequences are sent by all the
UEs to all the APs simultaneously. Denote by τt (samples)
the length of one pilot sequence. Let

√
τtϕϕϕk ∈ Cτt×1

be the pilot sequence transmitted from UE k ∈ K, where
‖ϕϕϕk ‖2 = 1,∀k ∈ K. The channel from a UE k to an AP m
is modeled as gmk = (βmk)1/2g̃mk, where βmk and g̃mk ∈ C
represent the large-scale fading and small-scale fading channel
coefficients, respectively. Assume that g̃mk is an independent
and identically distributed (i.i.d.) CN (0, 1) random variable.

The AP m receives the pilot vector yyym =√
τtρt

∑
k∈K gmkϕϕϕk +wwwm, where ρt is the normalized

signal-to-noise ratio (SNR) of each pilot symbol,
and wwwm ∈ CN (000, III) is the additive noise at the
AP m. The projection of yyym onto ϕϕϕk is given as
ŷmk = ϕϕϕHk yyym =

√
τtρt

∑
`∈K gm`ϕϕϕ

H
k ϕϕϕ` +ϕϕϕHk wwwm.

After receiving ŷmk, the AP m estimates gmk by using
the minimum mean-square error (MMSE) estimation. Given
ŷmk, the MMSE estimate ĝmk of gmk is obtained as [29]:
ĝmk = E{ŷ∗mgmk}(E{|ŷmk|2})−1ŷmk = cmkŷmk, where
cmk ,

√
τtρtβmk∑

`∈K τtρtβm`|ϕϕϕHk ϕϕϕ` |2+1
. From the property of

MMSE channel estimation, ĝmk is distributed according to
CN (0, σ2

mk), where σ2
mk = τtρt(βmk)

2∑
`∈K τtρtβm`|ϕϕϕHk ϕϕϕ` |2+1

[29].

Remark 5. In indoor communications, the time for UL train-
ing can be much smaller than the small-scale coherence time
Tc. For example, a system supporting users’ mobility of
v = 0.75 m/s = 2.7 km/h, delay spread of Td = 0.5 µs and
carrier frequency fc = 2 GHz has a small-scale coherence
time of Tc = c

4fcv
= 50 ms, and coherence bandwidth

Bc = 1
2Td

= 1 MHz [28]. Suppose τt = 20, the time for UL
channel estimation is tce = τt

Bc
= 0.02 ms � Tc. Therefore,

the time for UL channel estimation can be ignored in one
small-scale coherence time and one FL process interval.

2) Step (S1) in each iteration of the FL process: At the
CPU, the global DL training update intended for a UE k is
encoded into a symbol sd,k ∼ CN (0, 1). Here, each DL/UL
training update is considered as a data message that is widely

used in the literature of wireless communications [20]. The
CPU then sends sd,k,∀k ∈ K, to all the APs over backhaul
links. Let Sd (bits) and Rd,k (bps) be the data size and the data
rate of the global DL training update for the UE k, respectively.
The download latency from the CPU to all the APs is given
by

td,B(RRRd) =
KSd∑
k∈KRd,k

, (10)

where RRRd , {Rd,k}k∈K.
For ease of implementation, we apply a conjugate beam-

forming scheme to the APs to precode the message signals
before wirelessly transmitting them to the UEs (using the
channel estimates from the UL channel estimation). The
transmitted signal at an AP m is expressed as xd,m =√
ρd
∑
k∈K
√
ηmk(ĝmk)∗sd,k, where ρd is the maximum nor-

malized transmit power (normalized by the noise power N0)
at each AP and ηmk,∀m ∈ M, k ∈ K, is a power control
coefficient. The AP m is required to meet the average nor-
malized power constraint, i.e., E{|xd,m|2} ≤ ρd, which can
also be expressed as the following per-AP power constraint:∑

k∈K

σ2
mkηmk ≤ 1,∀m. (11)

The received signal at the UE k is given by rd,k =∑
m∈M gmkxd,m + wk, where wk is the additive noise

CN (0, 1) at the UE k. The achievable DL rate at the UE k is

Rd,k ≤ hd,k(ηηη), (12)
where ηηη , {ηmk}m∈M,k∈K and hd,k(ηηη) is given in (13)
shown at the top of the page [19]. Note that in (13), B is
the bandwidth. The download latency from the APs to the UE
k is given by

td,k(Rd,k) =
Sd
Rd,k

. (14)

3) Step (S3) in each iteration of the FL process: After
updating the local model, the UE k encodes the global UL
training update into a symbol su,k ∼ CN (0, 1). The symbol
su,k is then allocated a transmit amplitude value

√
ρuζk to

generate a baseband signal xu,k for wireless transmissions,
i.e., xu,k =

√
ρuζksu,k. The UE k is adhered to the average

transmit power constraint, i.e., E
{
|xu,k|2

}
≤ ρu, which can

also be expressed in a per-UE constraint as
0 ≤ ζk ≤ 1,∀k ∈ K . (15)

The upload latency from the UE k to the AP m is given by

tu,k(Ru,k) =
Su
Ru,k

, (16)

where Su (bits) and Ru,k (bps) are the data size and the data
rate of the global UL training update, respectively.

The received signal at the AP m is expressed as
yu,m =

∑
k∈K

gmkxu,k + wu,m

=
√
ρu
∑
k∈K

gmk
√
ζksu,k + wu,m, (17)

where wu,m ∼ CN (0, 1) is the additive noise. To detect
the message symbol transmitted from the UE k, the AP m
computes and sends (ĝmk)∗yu,m to the CPU. The upload
latency from the APs to the CPU is expressed as

tu,B(RRRu) =
KSu∑
k∈KRu,k

(18)
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hd,k(ηηη) =
τc − τt
τc

B log2

(
1 +

ρd

(∑
m∈M η

1/2
mkσ

2
mk

)2
ρd
∑
`∈K\k

(∑
m∈M η

1/2
m` σ

2
m`

βmk
βm`

)2
|ϕϕϕH` ϕϕϕk |2 + ρd

∑
`∈K

∑
m∈M ηm`σ2

m`βmk + 1

)
(13)

where RRRu , {Ru,k}k∈K.
At the CPU, the symbol su,` is detected from the received

signal ru,k:
ru,k =

√
ρu
∑
m∈M

√
ζk(ĝmk)∗gmksu,k

+
√
ρu
∑
m∈M

∑
`∈K\k

√
ζ`(ĝmk)∗gm`su,`

+
∑
m∈M

(ĝmk)∗wu,m. (19)

The achievable UL rate for the UE k is given by

Ru,k ≤ hu,k(ζζζ), (20)

where ζζζ , {ζk}k∈K and hu,k(ζζζ) is defined in (21) shown at
the top of the next page [19].

B. Step (S2) in Each Iteration of the FL Process: Model of
Local Training Update Computation at UEs

Denote by ck (cycles/sample) the number of processing
cycles for a UE k to process one data sample. ck is known a
priori by an offline measurement [30]. Let Dk (samples) and
fk (cycles/s) be the size of the local data set and the processing
frequency of the UE k, respectively. The latency of computing
the local training update at the UE k is by

tC,k(θ, fk) = L(θ)
Dkck
fk

, (22)

where L(θ) is the number of local training iterations (see (8))
and Dkck

fk
is the time taken to compute the local update over

its local training data set in each iteration. Given the limited
computational resource at the UEs, we only focus on the
delay of computing the local updates at the UEs. Since the
computational resource of the CPU is much more abundant
than that of the UEs, the latency of aggregating the global UL
training updates at the CPU is negligible, and hence ignored.

C. The Model of UE’s Energy Consumption

Because the time for UL channel estimation is negligible
compared with one FL training interval, the energy consumed
in the time block of UL channel estimation is ignored. The
energy consumption in the time block of ULTUT at a UE k
is given by

ET,k(ζk, Ru,k) = ρuN0ζk
Su
Ru,k

, (23)

where ζk is the transmitted UL power and Su
Ru,k

is the delay
incurred by transmitting the global UL training update ∆χχχk.
The energy required for computing local training updates at
the UE k is expressed as [10]

EC,k(θ, fk) = L(θ)
α

2
ckDkf

2
k , (24)

where α
2 is the effective capacitance coefficient of the UEs’

computing chipset.

V. FL TRAINING TIME MINIMIZATION: PROBLEM
FORMULATION

To optimize the performance of the FL process using the
considered FL framework [21] in the CFmMIMO network
model discussed in Sections IV, this paper targets the key
performance metric of training time minimization.

In each iteration of the FL process, the time of Step (S1) for
a UE k involves the transmission delay of sending the global
DL training update from the CPU to the APs via backhaul
links and that from the APs to UE k via wireless links, i.e.,

tdT,k(RRRd) = td,B(RRRd) + td,k(Rd,k) =
KSd∑
k∈KRd,k

+
Sd
Rd,k

.

(25)
Similarly, the time of Step (S2) for the UE k consists of the
delay of transmitting the global UL training update from it to
the APs and from the APs to the CPU, i.e.

tuT,k(RRRu) = tu,k(Ru,k) + tu,B(RRRu) =
Su
Ru,k

+
KSu∑
k∈KRu,k

.

(26)
In the proposed scheme in Section II-C, each of the steps (S1)-
(S4) of one iteration of the FL process must be completed for
all the UEs before the latter step is executed. Therefore, the
time of one iteration of the FL process is

TG(θ,fff,RRRd,RRRu)

= max
k∈K

tdT,k(RRRd) + max
k∈K

tC,k(θ, fk) + max
k∈K

tuT,k(θ,fff,RRRu)

= td,B(RRRd) + max
k∈K

td,k(Rd,k) + max
k∈K

tC,k(θ, fk)

+ max
k∈K

tu,k(Ru,k) + tu,B(RRRu)

, td,B + td,W + tC + tu,W + tu,B , (27)

where fff , {fk}k∈K; td,W or tu,W is the maximum delay
for a complete DLTUT or ULTUT via wireless links; tC is
the maximum delay for all the UEs to complete their local
training update computation. Note again that the time of the
global training update at the CPU is ignored as discussed in
Section IV-B.

As can be seen from (27), TG(θ,fff,RRRd,RRRu) relies on both
(fff,RRRd,RRRu) and θ. However, only (fff,RRRd,RRRu) is optimized to
reduce the time TG(θ,fff,RRRd,RRRu) of one iteration of the FL
process in each large-scale coherence time. This is because any
change of θ leads to the change in the number of iterations
G(θ) of the FL process as shown in (9). Therefore, (fff,RRRd,RRRu)
and θ must be optimized independently in different timescales.

To measure how efficient the time of each iteration of the
FL process is optimized over different large-scale coherence
times, we introduce a new metric termed “ergodic time of one
iteration of the FL process”, i.e., E{TG(θ,fff,RRRd,RRRu)}. Here,
E{TG(θ,fff,RRRd,RRRu)} is the average of TG(θ,fff,RRRd,RRRu) over
the large-scale fading realizations. The effective time of one
FL process is then defined as
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hu,k(ζζζ) =
τc − τt
τc

B log2

(
1 +

ρuζk
(∑

m∈M σ2
mk

)2
ρu
∑
`∈K\k ζ`

(∑
m∈M σ2

mk
βm`
βmk

)2
|ϕϕϕHk ϕϕϕ` |2 + ρu

∑
`∈K ζ`

∑
m∈M σ2

mkβm` +
∑
m∈M σ2

mk

)
(21)

Te(θ,fff,RRRd,RRRu) , G(θ)E{TG(θ,fff,RRRd,RRRu)}

= ϑ log( 1
ε )E

{TG(θ,fff,RRRd,RRRu)

1− θ

}
= ϑ log( 1

ε )E{T (θ,fff,RRRd,RRRu)}, (28)

where T (θ,fff,RRRd,RRRu) , TG(θ,fff,RRRd,RRRu)
1−θ . For ease of presen-

tation, we make the following definition.

Definition 3. An effective training time of FL is the effective
time of one FL process and is computed as (28).

The problem of FL training time minimization for the FL
framework [21] in the considered CFmMIMO system model
is thus formulated as:

min
ηηη,ζζζ,θ,fff,RRRd,RRRu

g(θ,fff,RRRd,RRRu) , E{T (θ,fff,RRRd,RRRu)} (29a)

s.t. (11), (12), (15), (20)
ET,k(ζk, Ru,k) + EC,k(θ, fk) ≤ Ek,max,∀k

(29b)
fk,min ≤ fk ≤ fk,max,∀k (29c)
0 ≤ ηmk,∀m, k (29d)
0 ≤ ζk,∀k (29e)
0 ≤ Rd,k,∀k (29f)
0 ≤ Ru,k,∀k (29g)
θmin ≤ θ ≤ θmax. (29h)

Here, problem (29) takes into account the issues related
to device performance and user experience, i.e., limiting a
maximum energy in (29b) and a maximum frequency pro-
cessing (29c) in order to ensure that performing FL does
not affect much on the UEs’ other functions such as data
transmission and computation. Problem (29) has a nonconvex
stochastic, mixed-timescale structure, along with the tight
coupling among the variables. Finding its globally optimal
solution is challenging. This paper instead aims to propose a
solution approach that is suitable for practical implementation.

Remark 6. At first glance, the optimization problem (29) is
only valid for the FL framework [21] because (8) and (9).
Nevertheless, on closer observation, the total training time of
any FL process (including [21]) normally involves variables
that are optimized in different timescales. The variables such
as local accuracy θ are optimized in long-term timescales
while the variables such as power, rates are optimized in short-
term timescales. This leads to the stochastic structure of the
training time minimization problems as discussed after (27). In
this sense, the optimization problems for other FL frameworks
can be different from (35) but their stochastic structures are
the same as that of (29). Therefore, we only use the example
[21] to show this structure. Moreover, the structure of the
algorithms to solve these optimization problems is also the
same as that shown in the next section.

VI. FL TRAINING TIME MINIMIZATION: PROPOSED
ALGORITHM

To resolve problem (29), we utilize the online succes-
sive convex approximation approach for solving two-stage
stochastic nonconvex optimization problems in [22]. Note that
while [22] only provides a general description of the solution
method, we specifically tailor it to devise a new algorithm for
(29).

According to [31], problem (29) can be decomposed into
a family of short-term subproblems and a long-term master
problem as follows. For a given θ and large-scale fading co-
efficients βββ , {βmk}m∈M,k∈K in each large-scale coherence
time, the short-term subproblem is expressed as:

min
ηηη,ζζζ,fff,RRRd,RRRu

T (fff,RRRd,RRRu) (30)

s.t. (11), (12), (15), (20), (29b)− (29g).
For given optimal solutions {(ηηη∗, ζζζ∗, fff∗,RRR∗d,RRR

∗
u)} to prob-

lems (30) at all large-scale coherence times, the long-term
master problem is expressed as:

min
θ

g(θ) , E{T (θ)} (31)

s.t. (29h).

A. Solving the Short-term Subproblem (30)

Problem (30) can be rewritten in an epigraph form as
follows.

min
xxx

ω

1− θ
(32a)

s.t. ω ≥ td,B(RRRd) + max
k∈K

td,k(Rd,k) + max
k∈K

tC,k(θ, fk)

+ max
k∈K

tu,k(Ru,k) + tu,B(RRRu) (32b)

ρuN0%kSu + ν log

(
1

θ

)
α

2
ckDkf

2
k ≤ Ek,max,∀k

(32c)
ζk ≤ %kRu,k,∀k (32d)
(11), (12), (15), (20), (29c)− (29g),

where xxx , (ηηη,ζζζ,fff,RRRd,RRRu, ω,%%%), ω and %%% , {%k}k∈K are
additional variables. If we let vvv , {vmk}m∈M,k∈K and uuu ,
{uk}k∈K with

vmk , η
1/2
mk ,∀m, k (33)

uk , ζ
1/2
k ,∀k, (34)

then (32) can be rewritten as:

min
x̃xx

ω

1− θ
(35a)

s.t. ω ≥ KSd∑
k∈KRd,k

+ td + tC + tu +
KSu∑
k∈KRu,k

(35b)

td ≥
Sd
Rd,k

,∀k (35c)
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tC ≥
ν log

(
1
θ

)
Dkck

fk
,∀k (35d)

tu ≥
Su
Ru,k

,∀k (35e)

u2k ≤ %kRu,k,∀k (35f)
Rd,k ≤ hd,k(vvv),∀k (35g)
Ru,k ≤ hu,k(uuu),∀k (35h)∑
k∈K

σ2
mkv

2
mk ≤ 1,∀m (35i)

0 < vmk,∀m ∈M, k ∈ K (35j)
0 < uk ≤ 1,∀k ∈ K (35k)
(29c), (29f), (29g), (32c),

where x̃xx , {xxx,vvv,uuu, td, tC , tu} \ {ηηη,ζζζ}, td, tC and tu are
additional variables. Note that (35) is still challenging due to
the nonconvex constraints (35f), (35g), and (35h).

To solve (35), we first rewrite (35f) as
zk(uk, %k, Ru,k) ≤ 0,∀k. (36)

where zk(uk, %k, Ru,k) , 4u2k− (%k +Ru,k)2 + (%k−Ru,k)2.
Note that, for a given point (x(n), y(n)), a function f(x, y) =
−(x+ y)2 has an upper bound f̃(x, y) ≥ f(x, y) as

f̃(x, y) ,− 2(x(n) + y(n))(x+ y) + (x(n) + y(n))2

+ δ((x− x(n))2 + (y − y(n))2), (37)
where δ > 0 can be any constant. Different from the upper
bound used in [32], f̃(x, y) is introduced here with the term of
δ((x−x(n))2+(y−y(n))2) to ensure its strong convexity. Now,
(35f) can be approximated at iteration n+ 1 by the following
convex constraint

z̃k(uk, %k, Ru,k) ≤ 0,∀k. (38)
where
z̃k(uk, %k, Ru,k) , 4u2k − 2(%

(n)
k +R

(n)
u,k)(%k +Ru,k)

+ (%
(n)
k +R

(n)
u,k)2 + (%k −Ru,k)2

+ δ((%k − %(n)k )2 + (Ru,k −R(n)
u,k)2).

(39)
To deal with (35g) and (35h), we note that a function

f(x, y) = log
(

1 + |x|2
y

)
has the following lower bound [33]:

f(x, y) ≥ log
(

1 +
|x(n)|2

y(n)

)
− |x

(n)|2

y(n)
+

2
x(n)x

y(n)
− |x(n)|2(|x|2 + y)

y(n)(|x(n)|2 + y(n))
, (40)

where x ∈ R, y > 0, y(n) > 0. Therefore, the concave lower
bound h̃d,k(vvv) of hd,k(vvv) in (35g) is given by

h̃d,k(vvv) , log2

(
1 +

(Υ
(n)
k )2

Π
(n)
k

)
−

(Υ
(n)
k )2

Π
(n)
k

+ 2
Υ

(n)
k Υk

Π
(n)
k

−
(Υ

(n)
k )2(Υ2

k + Πk)

Π
(n)
k ((Υ

(n)
k )2 + Π

(n)
k )
≤ hd,k(vvv),

(41)
where

Υk({vmk}m∈M) =
√
ρd
∑
m∈M

vmkσ
2
mk, (42)

Πk(vvv) = ρd
∑
`∈K\k

( ∑
m∈M

vm`σ
2
m`

βmk
βm`

)2
|ϕϕϕH` ϕϕϕk |2

Algorithm 3 Solving the short-term subproblem (30)
1: Initialization: Set n = 1 and choose a random point
x̃xx
(0) ∈ F .

2: repeat
3: Update n = n+ 1
4: Solving (49) to get its optimal solution x̃xx∗

5: Update x̃xx(n) = x̃xx
∗

6: until convergence
Output: (ηηη∗, ζζζ∗, fff∗,RRR∗d,RRR

∗
u)

+ ρd
∑
`∈K

∑
m∈M

v2m`σ
2
m`βmk + 1. (43)

Similarly, the concave lower bound h̃u,k(uuu) of hu,k(uuu) in
(35h) is given by

h̃u,k(uuu) , log2

(
1 +

(Ψ
(n)
k )2

Ξ
(n)
k

)
−

(Ψ
(n)
k )2

Ξ
(n)
k

+

2
Ψ

(n)
k Ψk

Ξ
(n)
k

−
(Ψ

(n)
k )2(Ψ2

k + Ξk)

Ξ
(n)
k ((Ψ

(n)
k )2 + Ξ

(n)
k )
≤ hu,k(uuu),

(44)
where

Ψk(uk) =ρ1/2u uk(
∑
m∈M

σ2
mk), (45)

Ξk(uuu) =ρu
∑
`∈K\k

u2`

( ∑
m∈M

σ2
mk

βm`
βmk

)2
|ϕϕϕHk ϕϕϕ` |2

+ ρu
∑
`∈K

u2`
∑
m∈M

σ2
mkβm` +

∑
m∈M

σ2
mk. (46)

As such, (35g) and (35h) can be approximated by
Rd,k ≤ h̃d,k(vvv),∀k ∈ K, (47)

Ru,k ≤ h̃u,k(uuu),∀k ∈ K . (48)

At the iteration n+ 1, for a given point x̃xx(n), problem (35)
(hence (30)) can finally be approximated by the following
convex problem:

min
x̃xx∈F̃

ω

1− θ
, (49)

where F̃ , {(29c), (29f), (29g), (32c), (35b) − (35e), (35i) −
(35k), (38), (47), (48)} is a convex feasible set.

In Algorithm 3, we outline the main steps to solve problem
(30). Let F , {(29c), (29f), (29g),
(32c), (35b) − (35k)} be the feasible set of (35). Starting
from a random point x̃xx ∈ F , we solve (49) to obtain its
optimal solution x̃xx

∗. This solution is then used as an initial
point in the next iteration. The algorithm terminates when
an accuracy level of ε is reached. It can be confirmed that
h̃d,k(vvv) and h̃u,k(uuu) satisfy the key properties of general inner
approximation functions [34, Properties (i), (ii), and (iii)]. In
the case when the feasible set of problem (49) satisfies Slater’s
constraint qualification condition, Algorithm 3 converges to
a Karush-Kuhn-Tucker (KKT) solution of (35) when starting
from a point x̃xx(0) ∈ F [34, Theorem 1]. In the worse case
when the feasible set of problem (49) does not satisfy Slater’s
constraint qualification condition, Algorithm 3 converges to a
Fritz John (FJ) solution of (35) [32, Proposition 2]. By using
the variable transformations (33) and (34), it can be seen that
the KKT (respectively, FJ) solutions of (35) satisfy the KKT
(respectively, FJ) conditions of (32) as well as of (30).

3052147
Comment on Text
why do we have space here?
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B. Solving the Long-term Master Problem (31)

At the large-scale coherence time n+1, we replace the cost
function of the stochastic nonconvex problem (31) by a sample
surrogate function as [22]

g̃(n+1)(θ) = (1− φ(n+1))g̃(n)(θ) + φ(n+1)T̃ (θ), (50)
where φ(n+1) is a weighting parameter. g̃(n+1)(θ) depends
on the surrogate function g̃(n)(θ) of the previous large-scale
coherence time (n) and the approximate function T̃ (θ) of
T (θ). Here, g̃(n)(θ) is approximately updated as

g̃(n)(θ) = g(n) + (∇g)(n)(θ − θ(n+1)), (51)
and T̃ (θ) is expressed as
T̃ (θ) = T (n+1) + (∇T )(n+1)(θ − θ(n+1)) + τ(θ − θ(n+1))2,

(52)
where τ > 0 can be any constant.

With (51) and (52), (50) can be rewritten as:

g̃(n+1)(θ) = g(n+1) + (∇g)(n+1)(θ − θ(n+1))

+ τ(θ − θ(n+1))2, (53)
where g(n+1) and (∇g)(n+1) are updated as

g(n+1) = (1− φ(n+1))(g)(n) + φ(n+1)T (n+1) (54)

(∇g)(n+1) = (1− φ(n+1))(∇g)(n) + φ(n+1)(∇T )(n+1),
(55)

with g(0) = 0 and (∇g)(0) = 0. Here,

(∇T )(n+1) =
a+ b log(1/θ(n+1))− b(1/θ(n+1) − 1)

(1− θ(n+1))2
, (56)

where a = t
(n+1)
d,B + t

(n+1)
d,W + t

(n+1)
u,W + t

(n+1)
u,B and b =

νmax
k

(
Dkck
fk

)
. Since g̃(n+1)(θ) in (53) approximates g(θ) in

(31), problem (31) is finally approximated by the following
convex problem:

min
θ
{g(n+1) + (∇g)(n+1)(θ − θ(n+1)) + τ(θ − θ(n+1))2}

(57)
s.t. (29h).

C. Solving the Overall Problem (29)
Algorithm 4 outlines the main steps to solve the overall

problem (29). In the large-scale coherence time n, a random
large-scale fading coefficient βββ is realized. For a given random
value of θ(n+1) ∈ (0, 1), one short-term subproblem (30)
is solved by Algorithm 3 after I(n) iterations to obtain a
KKT solution. This solution is then used to construct the
approximate long-term master problem (57). After solving (57)
to obtain an optimal solution θ∗, we update θ(n+2) as

θ(n+2) = (1− π(n+1))θ(n+1) + π(n+1)θ∗, (58)
where π(n+1) is a weighting parameter. Here, {φ(n), π(n)} is
chosen to satisfy the following conditions [22, Assumption 5].

(C1): φ(n) → 0, 1
φ(n) ≤ O(nς) for ς ∈ (0, 1), and∑

n(φ(n))2 <∞;
(C2): π(n) → 0,

∑
n π

(n) = ∞,
∑
n(π(n))2 < ∞, and

limn→∞
π(n)

φ(n) = 0.

D. The Proposed Algorithm: Implementation and Conver-
gence Analysis
Referring to Fig. 2, Algorithm 4 is executed in the “FL
performance optimization” interval. Specifically, Steps 3 and
4 takes place in the time block of STO, while steps 5 − 8

in the time block of LTO. Once Algorithm 4 converges,
the FL process is then executed using the value of θ given
by Algorithm 4. Here, the performance of training update
transmission in each iteration of the FL process is enhanced by
updating (ηηη,ζζζ,fff,RRRd,RRRu) using Algorithm 3 in the STO time
block. Whenever the statistics of large-scale fading changes,
Algorithm 4 is executed again to make sure the FL perfor-
mance is optimized with the updated statistics.

The convergence of Algorithm 4 is proved as follows. From
the definitions of z̃k(%k, Ru,k), h̃d,k(vvv), and h̃u,k(uuu) in (39),
(41) and (44), it can be verified that z̃k(%k, Ru,k), h̃d,k(vvv) and
h̃u,k(uuu) have the following properties:

• z̃k(%
(n)
k , R

(n)
u,k) = zk(%

(n)
k , R

(n)
u,k), h̃d,k(vvv(n)) =

hd,k(vvv(n)), h̃u,k(uuu(n)) = hu,k(uuu(n)), ∇z̃k(%
(n)
k , R

(n)
u,k) =

∇zk(%
(n)
k , R

(n)
u,k), ∇h̃d,k(vvv(n)) = ∇hd,k(vvv(n)),

∇h̃u,k(uuu(n)) = ∇hu,k(uuu(n));
• z̃k(%k, Ru,k), −h̃d,k(vvv), and −h̃u,k(uuu) are strongly con-

vex;
• z̃k(%k, %

(n)
k , Ru,k, R

(n)
u,k) is Lipschitz continuous in all

%k, %
(n)
k , Ru,k, R

(n)
u,k; h̃d,k(vvv,vvv(n)) and h̃u,k(uuu,uuu(n)) are

Lipschitz continuous in both vvv,vvv(n) and both uuu,uuu(n),
respectively.

Algorithm 4 thus satisfies all the conditions for the short-term
algorithm to work, as specified in the general framework [22,
Assumption 2]. As such, the convergence of Algorithm 4 to
a stationary point of problem (29) is guaranteed if I(n) →∞
and N → ∞ [22, Theorem 2], where the FJ condition may
replace the KKT condition in the definition of the stationary
point [22, Definition 1]. In practice, since there are always
numerical errors in computation, it is acceptable to choose
finite {I(n)}n∈N and N , where N , {1, ..., N}. Therefore,
Algorithm 4 is then guaranteed to converge to the neighbour-
hood of the stationary solutions of problem (29) [22, Theorem
3].

The REPEAT-UNTIL loop runs for N iterations before
Algorithm 4 converges.

VII. CELL-FREE TDMA MASSIVE MIMO AND
COLLOCATED MASSIVE MIMO FOR WIRELESS

FEDERATED LEARNING

For comparison, this section introduces cell-free TDMA
massive MIMO and collocated massive MIMO approaches that
support wireless FL. Their associated problem formulations
and solution algorithms are discussed in the following.
A. Cell-Free TDMA Massive MIMO
The channel estimation of cell-free TDMA massive MIMO
networks is equivalent to that of the CFmMIMO networks
where all the pilot are pairwisely orthogonal, i.e., ϕϕϕH` ϕϕϕk =
0,∀` ∈ K\k. While cell-free TDMA massive MIMO networks
only require the length of the pilot sequence τ̃t to be 1,
CFmMIMO networks require τt ≥ K for orthogonal pilots
with K being the number of UEs.

In cell-free TDMA massive MIMO networks, the training
update transmissions between the APs and K UEs happen in
K equal orthogonal time slots. Therefore, a factor of (1/K)
is imposed on the achievable DL and UL rates. Specifically,
the achievable DL rate for a UE k is
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Algorithm 4 Training time minimization for FL on CFm-
MIMO networks

1: Initialization: Set n = 0 and choose a random point
θ(n+1) ∈ (0, 1).

2: repeat
3: A random βββ is realized for one large-scale coherence

time
4: Find the optimal solution (ηηη∗, ζζζ∗, fff∗,RRR∗d,RRR

∗
u) of the

short-term subproblem (30) by using Algorithm 3
5: Update (ηηη(n+1), ζζζ(n+1), fff (n+1),RRR

(n+1)
d ,RRR(n+1)

u ) =
(ηηη∗, ζζζ∗, fff∗,RRR∗d,RRR

∗
u)

6: Solve the approximate long-term master problem (57)
to obtain its optimal solution θ∗

7: Update θ(n+2) by (58)
8: Update n = n+ 1
9: until convergence

Output: θ∗ = θ(n+1)

Rd,k ≤
τc − τ̃t
Kτc

B log2

(
1 +

ρp
(∑

m∈M η
1/2
mkσ

2
mk

)2
ρp
∑
m∈M ηmkσ2

mkβmk + 1

)
,

(59)
where σ2

mk = τ̃tρ̃t(βmk)
2

τ̃tρ̃tβmk+1 , and ρ̃t is the normalized signal-to-
noise ratio (SNR) of each pilot symbol. The achievable UL
rate Ru,k for a UE k is

Ru,k ≤
τc − τ̃t
Kτc

B log2

(
1 +

ρuζk(
∑
m∈M σ2

mk)
2

ρuζk
∑
m∈M σ2

mkβmk+
∑
m∈M σ2

mk

)
.

(60)
Since the training updates are transmitted sequentially via
wireless links, the effective training time of FL in cell-free
TDMA massive MIMO networks is expressed as

Te,TDMA(θ,fff,RRRd,RRRu) , G(θ)E{TG,TDMA(θ,fff,RRRd,RRRu)}

,ϑ log
(
1
ε

)
E
{

1
1−θ

(
td,B(RRRd) +

∑
k∈K

td,k(Rd,k)

+ max
k∈K

tC,k(θ, fk) +
∑
k∈K

tu,k(Ru,k) + tu,B(RRRu)
)}

,ϑ log
(
1
ε

)
E{TTDMA(θ,fff,RRRd,RRRu)}. (61)

The problem of FL training time minimization for cell-free
TDMA massive MIMO is formulated as:

min
ηηη,ζζζ,θ,fff,RRRd,RRRu

E{TTDMA(θ,fff,RRRd,RRRu)} (62a)

s.t. (15), (29b)− (29h), (59), (60)

σ2
mkηmk ≤ 1,∀m. (62b)

Since problem (62) has the same mathematical structure as
(29), the former can be solved by a slightly modified version
of Algorithm 4 proposed in Section VI.
B. Collocated Massive MIMO

A collocated massive MIMO network is a special case
of a CFmMIMO network where all the APs are collocated.
Therefore, βmk = βk and σ2

mk = σ2
k,∀k ∈ K. The DL power

control coefficient ηk,∀k ∈ K, is constrained by∑
k∈K

σ2
k

ηk
M
≤ 1. (63)

From (12) and (20), the achievable DL and UL rates for UE
k are respectively designed as (64) and (65) at the top of the
next page.

The problem of FL training time minimization for collo-
cated massive MIMO is formulated as:

min
ηηη,ζζζ,θ,fff,RRRd,RRRu

E{T (θ,fff,RRRd,RRRu)} (66)

s.t. (15), (29b)− (29h), (63)− (65).
Similar to (62), problem (66) can be solved by a slightly
modified version of Algorithm 4 in Section VI.

VIII. NUMERICAL EXAMPLES

A. Parameters and Setup

We consider a CFmMIMO network with τc = 200 samples.
The APs and UEs are located in a square of D × D km2

whose edges are wrapped around to avoid the boundary effects.
The large-scale fading coefficients, e.g., βmk, are modeled

in the same manner as [35]: βmk = 10
PLdmk
10 10

σshdz
d
mk

10 ,

where 10
σshdz

d
mk

10 represents the log-normal shadowing with

the standard deviation σshd (in dB); and 10
PLdmk
10 represents

the three-slope path loss. PLdmk (in dB) is given by

PLdmk =

{
−L− 35 log10(dmk), if dmk > d1,

−L− 15 log10(d1)− 20 log10(dmk), if d0 < dmk ≤ d1,
−L− 15 log10(d1)− 20 log10(d0), if dmk ≤ d0,

(67)
where L is a constant depending on the carrier frequency, the
UE and AP heights. To estimate channels, a scheme of random
pilot is used in the time block of UL channel estimation.
Specifically, the pilot of each user is randomly chosen from
a predefined set of τt orthogonal pilot sequences of length τt
samples.

Here, we choose σshd = 8 dB, d0 = 10 m, d1 = 50
m, L = 140.7 dB, bandwidth B = 20 MHz, noise figure
F = 9 dB [19], fk,max = fmax = 3.0 × 109 cycles/s,
fk,min = fmin = 1 × 106 cycles/s, Dk = D̂ = 10 MB,
ck = c = 20 cycles/sample, ∀k, ν = ϑ = 1, Sd = Su = 5 MB,
α = 2 × 10−28 [10], Ek,max = Emax = 15 J, θmax = −10
dB, θmin = −60 dB, and ε = ε = 10−2. Noise power
N0 = kBT0BF = −92 dBm, where kB = 1.381 × 10−23

Joules/oK is the Boltzmann constant and T0 = 290 oK is the
noise temperature. Let ρ̃d = 1 W, ρ̃u = 0.2 W and ρ̃t = 0.2 W
be the maximum transmit power of the APs, UEs and UL pilot
sequences, respectively. The maximum transmit powers ρd, ρu
and ρt are normalized by the noise power. We set π(n) = 1

n

and φ(n) = 1
n7/8 which satisfy conditions (C1) and (C2) in

Section VI-C.
Remark 7. Our paper does not propose a new FL framework
but rather a scheme for a CFmMIMO network to support any
FL framework. Here, we consider an existing FL framework
[21] as an example to show how to improve the FL perfor-
mance in terms of training time minimization. Therefore, the
simulations on real datasets to see the effectiveness of the
considered FL framework has already been performed in [21,
Section 6], and hence, they are not considered in this paper.
Instead, in what follows, we focus on the numerical results to
analyze the effectiveness of the proposed Algorithm 4 to solve
the problem (29) of FL training time minimization for the FL
framework [21].
B. Results and Discussions

1) Effectiveness of the proposed algorithm: First, we eval-
uate the convergence behavior of the proposed Algorithm 4.
Fig. 4 shows the effective training time Te versus the number
of iterations with D = 0.5 km, K = 4, τt = 10 and
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Rd,k ≤
τc − τt
τc

B log2

(
1 +

ρpMηkσ
4
k

ρp
∑
`∈K\kMη`

(
σ2
`

βk
β`

)2
|ϕϕϕH` ϕϕϕk |2+ρp

∑
`∈K η`σ

2
`βk+1

)
(64)

Ru,k ≤
τc − τt
τc

B log2

(
1 +

ρuMζkσ
2
k

ρu
∑
`∈K\k ζ`Mσ2

k

(
β`
βk

)2
|ϕϕϕHk ϕϕϕ` |2 + ρu

∑
`∈K ζ`β` + 1

)
. (65)
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Fig. 4. The convergence of Algorithm 4. Here, K = 4.

M = {30, 50} for an arbitrary large-scale fading realization.
It can be seen from Fig. 4 that Algorithm 4 converges in fewer
than 100 iterations. It is also worth noting that each iteration of
Algorithm 4 corresponds to solving simple convex programs
(49) and (57). It is therefore expected that Algorithm 4 has a
low computational complexity.

To further evaluate the effectiveness of Algorithm 4, we
consider the following baseline schemes:

• Baseline 1 (BL1): The DL powers allocated to all UEs are
the same, i.e., ηmkσ2

mk = 1/K,∀m, k. The transmitted
UL power of each UE is maximum, i.e., ζk = 1,∀k.
The local accuracy is fixed, i.e., θ = θmax+θmin

2 dB. The
data rates and processing frequencies of UEs are then
optimized.

• Baseline 2 (BL2): This baseline is similar to BL1 except
that θ is optimized by a slightly modified version of
Algorithm 4 (without using Algorithm 3).

• Baseline 3 (BL3): This baseline is similar to BL1 except
that the transmitted DL and UL powers are optimized
by Algorithm 3. Here, the effective training time of FL
is the averaged time of one FL process taken over the
large-scale fading realizations.

Figs. 5 and 6 compare the effective training time Te by
the considered schemes. As seen, Algorithm 4 gives the
best performance. In particular, compared to BL1, the time
reduction by Algorithm 4 is up to 55% with M = 50,
K = 8. Note that BL2 and BL3 also perform much better
than BL1, e.g., up to 29% in term of time reduction with
M = 50,K = 2 and 38% with M = 50,K = 8, respectively.
Even so, Algorithm 4 still provides substantial time reductions
over BL2 and BL3, e.g., up to 49% with M = 50,K = 8 and
43% with M = 90,K = 4, respectively.

The figures not only show the importance of optimizing
transmit power or local accuracy, but also demonstrate the
noticeable advantage of joint optimization design. Moreover,
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Fig. 5. Comparison among the baselines and Algorithm 4. Here,
K = 4.
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Fig. 6. Comparison among the baselines and Algorithm 4. Here,
M = 50.

thanks to the array gain, the data rates of UEs increase when
the number of APs increases. This leads to the decrease in
the effective training time as shown in Fig. 5. It can also be
observed from Fig. 6 that a dramatic increase in the training
time when the number of UEs increases. This is because the
mutual interference and pilot contamination become stronger
for a larger number of UEs.

2) Impact of key system parameters on the effective training
time: The impact of the local accuracy on the effective training
time is shown in Fig. 7. Decreasing the threshold θmax leads
to a dramatic increase in the effective training time, e.g., by
up to 33% with θmax = −40 dB in comparison to that with
θmax = −10. This is reasonable because at a lower value of
θ, more iterations are required for local training. To keep the
energy consumption of UEs below Emax, the UEs’ processing
frequencies become smaller. This leads to an increase in the
time required to compute the local training updates.

Fig. 8 shows the impact of UE’s processing frequency on
the effective training time. As seen, the effective training time
increases when the threshold fmax decreases. In particular,
the increase is by up to 19% with fmax = 1.5× 109 cycles/s
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Fig. 7. Impact of the local accuracy on the effective training
time. Here, K = 4.
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Fig. 8. Impact of UE’s processing frequency on the effective
training time. Here, K = 4.

in comparison to that with fmax = 3 × 109 cycles/s. This
is because at a lower value of UEs’ processing frequency, it
requires more time to compute the local training updates.

In Fig. 9, the impact of UE’s energy consumption limit
Emax on the effective training time is revealed. Here, de-
creasing Emax leads to an increase in the effective time.
Specifically, the increase is by up to 9.4% with Emax = 2
J, D = 1 km in comparison to that with Emax = 15 J, D = 1
km. This is reasonable because at a low value of Emax, the
effective time may not approach the optimal value due to a
smaller feasible region of the optimization problem (29). We
note that in the case of deep fading, the achievable rates of
UEs could be small. This may lead to an infeasible problem
because the constraint (29b) on the energy consumed at each
UE may be violated. However, it should be also emphasized
that a cell-free massive MIMO network has many antennas
distributed over a potentially large coverage area. As very
high small-scale and macro diversity gains can be achieved,
the probability of simultaneously experiencing deep fading for
all links would be very small. The problem is therefore likely
feasible and our proposed solution would apply.

Fig. 10 focuses on the impact of the length of UL pilots on
the effective training time. It is clear that too small and too
large values of τt both increase the effective time. Specially,
the effective time increases up to 10% and 1% with τt = 1
and τt = 13 in comparison to that with τt = 7, respectively.
This is reasonable because at a large value of τt, the factor of
Tc−τt
Tc

makes the data rate decrease and the transmission time
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Fig. 9. Impact of UE’s energy consumption limit Emax on the
effective training time. Here, K = 4.
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Fig. 10. Impact of the length of UL pilots on the effective
training time. Here, K = 4.

grows. In contrast, at a small value of τt, the network suffers
more from the pilot contamination, the data rates drop and the
training update transmission time increases.

3) Cell-free massive MIMO vs. Cell-free TDMA massive
MIMO: Fig. 11 compares the cell-free massive MIMO system
with the cell-free TDMA massive MIMO system. Since the
pilot sequences of UEs in the latter are pairwisely orthogonal
in the time domain, we choose orthogonal pilot sequences for
the former, i.e., ϕϕϕH` ϕϕϕk = 0,∀` ∈ K\k, for a fair comparison.
The training durations are then the same for both systems. We
also choose ρ̃t = Kρt for the amount of energy consumed at
the “UL channel estimation” time blocks of the two networks
to be the same, and τt = K so that the powers of channel
estimate, i.e., σ2

mk,∀m, k, are the same in the two networks.
From Fig. 11, a significant time reduction (e.g., of up to 94%
with K = 8) is achieved by the CFmMIMO compared with
the cell-free TDMA massive MIMO. This result is expected
because in the former, the factor of (1/K) is imposed on the
data rates and the training updates are transmitted sequentially.
For a large number of UEs, the data rate is significantly small,
and as a result, the training update transmission requires a
substantially long time.

4) Cell-free massive MIMO vs. Collocated massive MIMO:
Finally, we compare the effective training time in CFmMIMO
with that in collocated massive MIMO. Fig. 12 shows that
the former significantly outperform the latter, e.g., the time
reduction is by up to 57% with M = 30 and D = 1
km. This observation is as expected because CFmMIMO
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Fig. 12. Comparison between CFmMIMO and collocated
massive MIMO. Here, K = 4.

distributes antennas over their coverage area; and as such, their
performance suffers less from the UEs with unfavorable links
than that of collocated massive MIMO. Higher data rates and
a lower training time then follow.

IX. CONCLUSION

In this paper, we have proposed using CFmMIMO networks
to support FL in a wireless environment. We designed a gen-
eral scheme in which any algorithm and beamforming/filtering
approach can be further developed to optimize the performance
of any FL framework. Specially here, each iteration of the
FL optimization algorithms or the FL process happens in
one large-scale coherence time. Targeting training time mini-
mization for the FL framework [21] as example, we jointly
design local accuracy, transmit power, data rate, and UE’s
processing frequency under the practical requirements on the
UE’s energy consumption limit and maximum transmit powers
at the APs and UEs. A mixed timescale stochastic nonconvex
optimization problem has been formulated with the objective
of minimizing the training time of one FL process. Based
on the general online successive convex approximation frame-
work, we have developed a new algorithm to successfully solve
the formulated problem. We have proved that the proposed
algorithm converges to the neighborhood of stationary points
of the optimization problem. For given parameter settings,
numerical results show that our joint optimization design
significantly reduces the training time of FL over the baselines
under comparison. They have also confirmed that CFmMIMO

offers the lowest training time when compared with cell-free
TDMA massive MIMO and collocated massive MIMO.
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