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Abstract

The definition of a mineral resource during exploration is a fundamental part of lease
evaluation, which establishes the fair market value of the entire asset being explored
in the open market. Since exact prediction of grades between sampled points is not
currently possible by conventional methods, an exact agreement between predicted and
actual grades will nearly always contain some error. These errors affect the evaluation
of resources so impacting on characterisation of risks, financial projections and decisions
about whether it is necessary to carry on with the further phases or not.

The knowledge about minerals below the surface, even when it is based upon extensive
geophysical analysis and drilling, is often too fragmentary to indicate with assurance
where to drill, how deep to drill and what can be expected. Thus, the exploration team
knows only the density of the rock and the grade along the core.

The purpose of this study is to improve the process of resource evaluation in the
exploration stage by increasing prediction accuracy and making an alternative assessment
about the spatial characteristics of gold mineralisation. There is significant industrial
interest in finding alternatives which may speed up the drilling phase, identify anomalies,
worthwhile targets and help in establishing fair market value.

Recent developments in nonconvex optimisation and high-dimensional statistics have
led to the idea that some engineering problems such as predicting gold variability at the
exploration stage can be solved with the application of clusterwise linear and penalised
maximum likelihood regression techniques.

This thesis attempts to solve the distribution of the mineralisation in the underlying
geology using clusterwise linear regression and convex Least Absolute Shrinkage and
Selection Operator (LASSO) techniques. The two presented optimisation techniques
compute predictive solutions within a domain using physical data provided directly from
drillholes. The decision-support techniques attempt a useful compromise between the
traditional and recently introduced methods in optimisation and regression analysis that
are developed to improve exploration targeting and to predict the gold occurrences at
previously unsampled locations.
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Chapter 1

Introduction

This thesis is devoted to one of the most intriguing mysteries for humankind since ancient
times - the prediction of mineral occurrence in the crust of the earth. Predicting the total
amount of worthwhile elements at depth beneath barren rock cover and the manner, in
which they are distributed has been one of the greatest challenges during all the history
of mining.

Any mining project begins with the exploration stage, which at the start of mine
development includes an approximation of the economic returns expected. Despite
exploration not guaranteeing that mining will occur in the area being explored, without
exploration, there would be no new resources for future mining. The Mining Act 1992
regards exploration and the mineral extraction as part of the overall mining process. In
Victoria, mineral exploration and mining activities are regulated under the The Mineral
Resources (Sustainable Development) Act 1990 (Vic)

A key point in the evaluation remains the proper description and design of a conceptual
model, upon which mine design and net present value projections can be built. The
evaluation of the economic potential in the early stages of exploration is very important
because it is used to determine the sale price of a project, set the relative contributions
for each of the partners in any Joint Venture and confirm that the benefits exceed the
cost of the exploration.

The geological settings of some deposits, such as iron ore, are often more clearly
understood and relatively easy to evaluate (Selley et al., 2005; Geoscience Australia).
However, the distribution of gold in more complex geological structures, such as a
high-nugget, vein-type deposits is more difficult to evaluate (JORC 2012, s.11). The
results obtained often give rise to divergent opinions and scientific debates.

The history of civilisation has been in part shaped by the discovery and retrieval of
gold. Gold exploration is risky and a marginally economic endeavour, which takes time,
persistence, innovation, intuition and significant investment. However, nothing is more
rewarding in the mining industry than discovering a big gold-bearing formation.

Australia still holds a strong competitive position in gold mining and the economics of
exploration are usually positive. However, surveys such as that conducted by Mackenzie
& Doggett (1992) have shown that the return from mine development and production in
some cases is only $1 Million greater than the associated cost of finding and delineating
an economic deposit.

A recent survey by Schodde (2017a) shows that the average discovery cost is A$70/oz
and is rising by A$10/oz per decade and most recent discoveries have been of small size
and low value. World-class gold resources, known as Tier 1 deposits are rare and only
2-3 are found each year. None were found in Australia in the last decade.

Despite most Australian gold exploration projects are not worth much at the early
stages, exploration requires significant funds from investors, who are ready to take a
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risk. However, foreign investors are reluctant to put a high value on gold exploration
projects, because they have limited access to the data necessary to realise the exploration
potential.

Mineral deposits are commonly overvalued and rarely undervalued. The benchmarking
studies carried out by MineEx Consulting from 2004 to 2017 reports that the Australian
valuers tend to over-value projects by 40% and the factors most associated with incorrect
evaluation are gold market price fluctuations and incorrect ore reserve estimations.

The price behaviour of gold usually differs from most other metals. The price of
gold does not usually change significantly. However, inaccurate drill-core database
interpretation presents challenges to accurately predicting the profit of gold mining
operations over the long-term. The history of mining activity shows that more mines
fail because of ore reserve errors than any other reason. To avoid problems associated
with financial expectations, it is very important to predict as precisely as possible the
continuity of the mineralisation and the amount of dilution within the explored areas.

Until the 1930s gold discovery was more a matter of luck than scientific prediction
(Bradley, 1925; Richert, 1929). There was no way of confirming the true values of the
area away from the measured points. Interpolation was a type of spatial prediction.

Articles published in the 1930s and 1940s (Richert, 1929; Solderberg, 1930) raised a
number of questions about the applicability of interpolation for predicting ore reserves.
Attempts at rigorous statistical testing were not generally attempted until the 1950s.
From year to year, gold exploration was becoming more and more expensive as new
deposits became harder to find (R. Schodde in Schodde, 2017a reports the increase of
the average discovery cost from A$10/oz in 1980 to A$70/oz in 2017). Many studies and
technical papers reveal the deficiencies in understanding the variability. This affected
the capacity to accurately predict how the minerals were distributed.

This situation changed substantially, thanks to geostatistics introduced by Matheron
(1963) and refined by David (1977). Since then, a number of probabilistic and algorithmic
approaches play an important role in applications used for evaluation.

With less than complete spatial information, the industry is often forced to make
assumptions as to what material is in the ground and how it will perform when extracted
and processed. In the past, some mining companies used unconventional methods in the
process of prediction, including human sensing and intuition. In 1980, Uri Geller, famous
for his psychokinetic demonstrations, predicted the existence of large coal deposit in
South Africa near the Zimbabwe border. In 1886 Geller successfully predicted locations
of gold and diamonds in previously unexplored areas of the Solomon Islands.

1.1 Exploratory Drilling

A generalised approach to modelling a deposit has three distinct components.
1. The geometry of the geological units that formed and host the ore body.
2. The attribute characterisation in terms of assays of all commodities to be mined.
3. The value model in terms of economic extraction.
The key element of this approach is the ability to predict all these components prior

to actual mine development. This makes the prediction of gold distribution fundamental
to the financial success of the entire project.

However, deposit geometric properties and physical characteristics are never completely
known, but are projected from the exploration drilling (Code of Practice 2012). The
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results of the exploration drilling program are the most useful data source for preliminary
resource evaluation and provide the basic input for defining recoverable reserves.

Diamond drilling performed from the surface or underground provides explorers with
an incomplete information of the underlying mineral content, the presence or absence of
the gold. Drilling results often reveal hidden details and change the whole direction of
the project. In this thesis, the data taken from cores is used as a basic input for data
processing, representation of drillhole traces, statistical visualisation and 3-D modelling.

The main objectives of exploratory core-drilling are
1. Obtaining core-samples for testing, gathering geophysical, geochemical information.
2. Finding anomalies and determining the geometry of the mineralisation.
3. Creating a model of the deposit.

This process is described in Pan et al. (1993) and Knight et al. (2007) as ore delineation.
Drilling results delineate exploration targets and lead to at an Inferred Mineral

Resource in conjunction with JORC 2012. This drilling data contains hidden information
that is used to guide additional exploration drilling activities.

Each stage of exploration is designed to get to the next decision point, that is, whether
or not to continue exploration, based on results of the previous stage. As delineation
information accumulates, the lateral and vertical limits of the resource are determined
and the grades to mineralisation are attributed. At the Pre-Feasibility phase (JORC
2012, s 29), Mineral Resources become Ore Reserves.

Another important aspect is very high cost of exploration drilling.
Exploration for minerals remains a risky endeavour because of its great uncertainties

(Selley et al., 2005). The cost of drilling can be very high, but the payoff from a success
can be great. The cost of a too tight drilling grid could affect investment decisions. Costs
of drilling, in areas of varying geographic remoteness, can range between A$100 to A$200
per metre (the cost is rarely disclosed, but can be found in some ASX Announcements).
Considering that it would be too expensive to obtain data over all the areas of the
exploration lease, the number of drillholes is usually kept to a minimum.

Annels & Dominy (2003) demonstrate that reliable evaluation depends on the number
and quality of samples taken during drilling. Insufficient patterns of drill holes over the
exploration lease can also affect evaluation. Indeed, from an engineering viewpoint,
errors in data interpretation begin with sampling, continue through data input, data
manipulation and the incorrect interpretation of the results.

Taking a very limited amount of geologic data and extrapolating the interpreted data
to cover unknown areas is a real problem in making accurate predictions. Some data is
always lost during core recovery. This is due to equipment failure, drilling bit deviation
and improper core handling and recording. Lost, badly recovered or badly recorded core
data always affects the accuracy of prediction and can potentially lead to the wrong
classification of entire deposit.

1.2 What is forecasted?

What changes are expected for the prediction of gold resources? Professor T. McCuaig
from the Centre for Exploration Targeting suggests that the industry will be forced
to undergo a dramatic shift away from exploiting large, ever lower grade resources to
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seek high quality discoveries. This shift will require innovations in understanding the
underlying geology and its largest scale footprints.

Professor Richard Schodde from MineEx Consulting in his long-term outlook for gold
2017–2057 (Schodde, 2017b) points out that to maintain long-term production at 2017
levels, the industry needs to double its current discovery performance. It has been
forecasted that by 2032, half of all Australia’s gold production will come from deposits
yet to be discovered. In forty years time almost all of Australia’s future gold production
will come from exploration successes.

To predict and discover economical gold deposits, the industry needs to develop
techniques that can provide greater precision and in less time. The banking community
requires a better understanding of the dynamic nature of the brownfields search space–the
potential of the near-mine region.

The latest stock market news updates and business newspapers report that speeding
up the exploration process by one year will result in a 0.2–0.3 Million ounces of gold per
year increase in Australia’s mine production in the medium term. Another established
fact (Schodde, 2017b) is that the effectiveness of exploration is declining. Thus, the
in-situ value of gold discovered per exploration dollar spent is currently only A$11
compared to A$23 in 2000 and A$57 in 1980-1990.

Recent sensitivity studies carried out by Centre for Exploration Targeting and MinEX
Consulting showed that each additional dollar spent on exploration generates an extra
A$11.40 in revenue. For the gold industry to maintain production at current levels in
the longer term, it will either need to

1. Double the amount spent on exploration, or
2. Double its discovery performance

To improve the performance multiple approaches to prospectivity and analysis will be
required to understand the geological uncertainty.

To do this, extra research is required into the development of new detection methods
and software packages. These are the tools that employ automation and the power of the
computer to improve the accuracy of prediction. It is also recommended that traditional
evaluation tools be viewed critically, as alternatives may exist, which in some cases are
better suited to achieving the required objectives.

1.3 Methods for analysing the evaluation information

A number of the studies have recognised the complexity of the spatial prediction problem
at hand and the difficulty of solving the problem with established systems. The prediction
of values at unmeasured points are currently made from the regionalised variable theory
(Matheron, 1963) and based on the concept of a random function. Many researchers have
pointed at a number of disadvantages of that theory (Philip & Watson, 1986; Armstrong
& Champigny, 1989; Rossi & Deutsch, 2014). In some cases, these may generate errors
in the assumptions (in section 2.4.1) of the geometry of a deposit.

Any existing method used in resource evaluation has drawbacks to a greater or lesser
extent. Geostatistics is not an exception and some techniques have been criticised for a
number of disadvantages. Journel & Huijbregts (1978) and Rossi & Deutsch (2014) have
specified several assumptions, which in some cases are not the best options in spatial
applications.
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Studies by Cox & Miller (1965), Shurtz (1985, 1994), Myers (1989), Merks (1992),
Henley & Watson (1998) and Chilès & Delfiner (2012) consider the assumptions of
continuity, the smoothness and differentiability of the regionalised functions of the
conventional tools such as kriging, which has the highest sensitivity to the number
of variables and the quality of samples involved in computation. The authors discuss
disadvantages of assumptions and argue that some methods are incapable of providing a
measure of the magnitude of the errors. Some authors admit that the estimate of grade
is misleading unless it provides not only an average value but also a probability for the
volume considered.

Both business and science agree that the errors in evaluation can never be eliminated
due to the heterogeneity of rock mass and a limited number of available drilling samples.
Geological uncertainty often defies attempts to describe the distribution of mineralisation
correctly. Therefore, the inaccuracies and risks that arise from uncertainty must be also
well understood and the resulting consequences carefully managed.

1.4 Prediction as an optimisation problem

Some statisticians (e.g. Galit, 2010) describe a predictive model as a method that
produces predictions, regardless of its underlying approach: parametric, nonparametric,
data mining, statistical models, etc.. In many cases it is possible to formulate the
prediction problem as an optimisation problem (Hahens & Doveton 1991; Kinnicutt et
al., 1994). Optimisation methods can also be applicable to solving some problems related
to the prediction of gold in unexplored areas.

The application of optimisation approaches for resource definition is not a new topic
in the literature. A number of techniques that are capable of predicting the existence
of mineral occurrences can be found in Clarici et al. (1993), Yama & Lineberry (1999),
Melkumyan & Ramos (2011) and Rodrigues et al. (2015). Collectively, all these studies
outline the critical role of optimisation in predicting spatial variation below the surface
and provide important insights into finding an optimal solution to the problem.

There is a large volume of mathematical studies (e.g. Converse, 1970; Polyak, 1987;
Fletcher, 1987; Rockafellar, 1994) describing the role of optimisation techniques in
recovering hidden patterns in data. While the traditional optimization based predictive
models applied to mine evaluation are usually convex, many important problems, such
as optimization models of the distribution of gold mineralisation and consequently,
evaluation of exploration/ mine potential involve nonconvex functions.

1.5 The Goals of The Thesis

A number of publicly available online ASX reports suggest that evaluation and investment
in gold mining remain the realm of the investor able to evaluate the relative probability of
a project. A number of studies referenced in this chapter identify the need for accuracy
and precision of evaluation in early stages of exploration, which is the key to decide
whether it is necessary to carry on the further phases or not.

There has been considerable debate in the literature on the applicability of some
conventional techniques when applied to complex gold deposits. The spatial and temporal
distribution of gold deposits is extremely heterogeneous (Groves et al., 2005).
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Pragmatically, the main problems with the evaluation of such deposits stem from the
lack of spatial continuity, highly erratic distribution of minerals, limited drilling data
and quality of sampling.

It is fair to suggest that some extra research is required to develop alternative techniques
that are less sensitive to heterogeneity and can make more accurate prediction of the
existence of anomalies and the deposit potential. The purpose and long-term goal of this
thesis is improving the accuracy of mine evaluation by increasing prediction accuracy and
facilitating alternative prediction of gold mineralisation with the application of modern
methodologies.

1.6 Summary of Chapter

Resource estimates are not precise calculations, being dependent on the interpretation
of limited information and the available sampling results.

There is a significant industrial interest in finding alternatives which satisfy the
industry requirements (section 1.2), may speed up the drilling phase, identify worthwhile
targets and promising footprints, helping in establishing the fair market value of a gold
deposit in the open market.

Apart from those listed above, two more important aspects have to be addressed.
At the exploration phase, the knowledge about the gold occurrence, even when it

is based upon extensive geophysical analysis, is often too fragmentary to indicate with
assurance where to drill, how deep to drill and what can be expected when you drill.
The exploration team knows only the density of the rock and the grade along the core.

An important constraint on mine evaluation is the data visualisation, in particular,
the availability of high-resolution predictive maps. The disadvantage of modern 3-D
commercial software packages with integrated statistical tools is the lack of transparency.
The underlying source codes by which resource estimation is completed are not accessible
and the manuals have limited information. As a result, in some cases it is hard to
understand what is being done just based on the available instructions.

Two alternative and conceptually distinct methods are developed through this thesis:
Method 1 is a machine learning technique, more specifically, Clusterwise Linear

Regression (CLR). This model helps to achieve relatively high accuracy of predicting
local instances of gold in unexplored areas and beyond the exploration lease. Each
predicted structure has its own set of x, y, z coordinates and an attribute, such as gold
grade in Au g/t. The predicted points can suggest to the exploration team the presence
or absence or extent of the gold in lease.

Method 2 refers to predictive mapping with the application of high dimensional
statistics. The method is based on the Least Absolute Shrinkage and Selection Operator
(LASSO) methodology and is used to generate maps of unexplored areas using a g/m3

metrics. The method allows the automation of high-dimensional analysis, provides the
minimisation of generalisation errors in dimension reduction while maximising predictive
performance. Method 2 is a platform for creating further, more complex techniques.

The two proposed methods are viewed as alternatives to the traditional techniques
used in the preparation of the Exploration Target Statement and Public Reporting of
Exploration Results. It will be demonstrated that in a general sense, that the proposed
methods in some cases are less affected by the limitations existing in some conventional
methods.
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Organisation of the Thesis

This thesis is concerned with developing two regression methods, which can improve
prediction of the probability of mineral occurrence below the surface, which, in turn,
leads to decisions on the amount of funds to be deployed in exploration and mining.
There is arguably a more important need to research, design predictive methods to ensure
that the developed methods be in applied to solving real-world tasks. The structure of
this thesis is as follows:

Following this introduction, chapter 2 provides a general introduction to basic mining
and investment terminology, discusses common techniques used in evaluation, surveys
their advantages and disadvantages within the context of engineering evaluation as well
as general description of the commonly used spatial techniques. The factors that affect
the performance of these techniques are discussed. Finally, the role of machine learning
in solving spatial variation is reviewed.

Chapter 3 is the most creative part of the thesis. The problem of predicting hidden
data is reformulated into a nonconvex optimisation problem. The design of the overall
configuration required for recovering hidden data is presented and the implementation
of the algorithms is discussed. The chapter ends with the presentation of a complete
design of the direct detection predictive system based on machine learning techniques.

Chapter 4 presents real-world geological data with a complex structure and having a
large number of internal boundaries. A data preparation process to convert raw drilling
data into a mathematical format is discussed. A series of tests are conducted to study
and compare the behaviour of predictive sets obtained during multiple program runs.
3-D renders with mathematical content are used as a way to deliver locally optimal
solutions within visualised contexts.

Chapter 5 looks at the research problem from a different view and presents an
alternative, convex predictive method based on `1 penalties empowered by glmnet
R-package, which sets the regression coefficients to exactly zero. The method selects
predictors, shrinks their coefficients toward zero relative to the least-squares estimates.
A number of predictive maps generated by the method are introduced.

Important findings are drawn and future directions for research are discussed in the
final Chapter 6 of the thesis.
The following important matters are presented in greater details in the Appendices:
Appendix A: data transformation from raw to output code.
Appendix B: UML system code.
Appendix C: LASSO R code.
Appendix D: Matrices of Kernel densities for predictive prototypes.
Appendix E: Output format of prediction
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Chapter 2

Literature Review

The economic viability of a project depends on reliable exploration targeting, which
requires the prediction of the presence or the absence or the extent of mineralisation in
a deposit. This chapter provides a general introduction to basic exploration, mining and
investment terminology, discusses common techniques used in evaluation and surveys,
their advantages and disadvantages within the context of engineering evaluation. The
chapter identifies from all the information which could be considered what is actually
necessary to develop predictive methods that can help improve exploration targeting
and predict the probability of gold occurrence, which lead to more accurate evaluation
of a deposit.

2.1 Terminology and Definitions

Australia has one of the world’s largest share of economic gold reserves and is also a large
contributor to the global gold trade (A Minerals Council of Australia). Since gold was
discovered in the 1850s, gold mining has been a key contributor to Australia’s wealth
and prosperity. In 2017, gold in Australia produced 9.7 Moz of gold, generated $A16
billion in revenue and employed 28,000 people at 76 gold operations (Lucas, 2018)

Australian mining legislation differs substantially from the mining laws of other countries.
Each of the States and Territories has its own legislation governing the exploration and
extraction of minerals.

In Queensland, for example, depending on the project, resource permits and authorities
for exploration and mining can granted under the Environmental Protection Act 1994
(Qld) and Mineral Resources (Sustainable Development) (Mineral Industries) Interim
Regulations 2018 once a resource proponent has completed an Environmental Impact
Statement.

Exploration is the process of searching for deposits of minerals in the ground. The
purpose of exploration is to locate areas where mineral resources may be present, to
establish the quality and quantity of those resources and to investigate the viability of
extracting the resource. In the Northern Territory, exploration is regarded as the amount
of work necessary for the discovery and assessment of the potential value of minerals in
the title area (Mineral Titles Act 2018 (NT)).

According to Australia Minerals, one of the first-order challenges for the industry is
being able to reliably predict at the deposit-scale the depth to prospective basement and
the character of the overlying cover.

In NSW, before exploring for minerals, an explorer must first obtain an Exploration
Licence under the Mining Act 1992, pt. 3. An exploration Lease is usually granted by
the State for a period of five years and gives the licence holder the exclusive right to:

– explore minerals within a designated area for the evaluation of the potential for
mining in the area.
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Exploration licences do not permit mining, nor do they guarantee that a mining lease
will be granted.

Figure 2.1. Exploration defines Inferred or Indicated Resources, in some cases
Resources may be upgraded as to Measured. Adapted from JORC 2012

It is necessary to consider the four essential stages for the development of mines in
Australia:

1. The initial exploration stage: a range of methods are used, and predictions made
prior to validation by drilling.

2. The further detailed exploration stage: exploratory drilling defines mineral resources
(see Figure 2.1) with reasonable prospects for being developed into standalone
mines or neighbouring mines. This thesis focuses on the predictions made in this
stage.

3. The mining stage (not covered in this thesis), which begins with Pre-Feasibility
and Feasibility studies.

4. Opening a surface or underground mine and exploiting the raw material. Mineralisation
may not be classified as a reserve unless the determination has been made that
the mineralisation could be economically and legally produced or extracted at the
time the reserve determination is made.

A Mineral Resource (see JORC 2012, s. 20) is a concentration of minerals some of
which are valuable, but most are not. The amount of valuable minerals that a Mineral
Resource contains is stated as % or a grade which is the average amount of grams of
gold per ton.

Figure 2.1 shows the relationship between Exploration Results, Mineral Resources
and Ore Reserves. Exploration deals with Resources, which are sub-divided into three
categories based on the level of confidence in the results of testing (see JORC 2012, ss.
21–23)

1. Inferred Resources – the lowest level of confidence, but the data provides enough
information to imply the results.

2. Indicated Resources – high level of confidence but not as high as with Measured
Resources. The data provides enough information to assume the results.

3. Measured Resources – the highest level of confidence and the data provides enough
information to confirm the results.
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Only Indicated and Measured Resources can be upgraded to Reserves. To upgrade
Resources to Reserves a Competent Person (JORC 2012, s. 4) either a Pre-Feasibility
or Feasibility study.

2.1.1 Exploration: investor’s perspective

There are a large number of private and publicly listed mining companies and individuals
who are actively looking to acquire or invest in exploration projects. At any stage,
exploration projects can be bought, sold, optioned and joint ventured on the basis of
their perceived potential for the existence of an economic mineral deposit. From an
Australian Securities Exchange (ASX) viewpoint, the value of an exploration property
is therefore based on this exploration potential. Those seeking information about an
Australian investment opportunity in a resource project may find the following available:

Exploration Target Statement: in the early stages of exploration the quantity of data
available is generally not sufficient to allow any reasonable estimates of Resources. In
such cases, exploration results could include information on outcrop sampling, assays of
drill hole intersections, geochemical results and geophysical survey results, used in the
interests of investors (JORC 2012, s 18). Importantly, these results do not form part of
a declaration of Mineral Resources.

JORC 2012, s 17 sets out the detailed requirements that must be satisfied when
reporting an Exploration Target. Among other things, it requires that any statement
referring to potential quantity and grade of the target be expressed as ranges and must
include:

a. A detailed explanation of the basis for the statement, including a specific description
of the level of exploration activity already completed, and

b. A clarification statement within the same paragraph as the first reference of the
Exploration Target in the Public Report, stating that the potential quantity and
grade is conceptual in nature, that there has been insufficient exploration to
estimate a Mineral Resource and that it is uncertain if further exploration will
result in the estimation of a Mineral Resource.

JORC 2012, s 17 states that ranges of tonnages and grades must be represented only
as approximations. For example: from 0.3 Moz to 0.6 Moz of gold, or 1.1 Moz–1.8 Moz.

Under the ASX disclosure standards, if the Exploration Target Statement includes
information relating to ranges of tonnages and grades, these must also be represented
as approximations and supported by a description of the process used to determine the
grade and the tonnage ranges. In Banking terms this is a project that does not have a
reported JORC, 2012 Resource, or a Bank Feasibility Study in progress or completed,
and it is not in production.

Despite the fact that the Exploration Target Statement is not regarded as completed
exploration1, there are many investors who consider this stage is highly prospective. As
for a lot for sale in an auction, such projects are usually denoted as an Exploration
Investment Opportunity.

From an engineering perspective, early drilling results may delineate the Exploration
Target and can lead to an Inferred Mineral Resource. The drilling data contains hidden
information that can and should be used to inform and optimise additional drilling and
sampling activities.

1ASX Announcements, Tables 1. and 2. available at https://www.asx.com.au/



Chapter 2. Literature Review 11

Public Reporting of Exploration Results: JORC 2012, s 18 allows this stage to include
data that might be of use to investors, but which does not form part of a declaration
of Mineral Resources or Ore Reserves. Reports must include relevant information such
as exploration context, type and method of sampling, relevant sample intervals and
locations, distribution, dimensions and the relative location of all relevant assay data,
methods of analysis, and data aggregation methods. If true widths of mineralisation
are not reported, an appropriate qualification must be included in the Public Report.
Where assay and analytical results are reported, they must be reported using one of the
following methods, selected as the most appropriate by the Competent Person:

1. either by listing all results, along with sample intervals. Examples of this approach
can be found in Reporting of Exploration Results, s. 2)

2. or by reporting average grades of mineralised zones, indicating clearly how the
grades were calculated.

More information on Mineral Exploration reporting can be found at WAMEX.
JORC 2012, s 19, states that Public Reports of Exploration Results must contain

sufficient information to allow a considered and balanced judgement of their significance.
Reports must include relevant information such as exploration context, type and method
of sampling, relevant sample intervals and locations, distribution, dimensions and relative
location of all relevant assay data, methods of analysis, data aggregation methods ... on
any of the other criteria (JORC 2012, p.26, Table 1) that are material to an assessment.

Many public reports using method 1 can be found in open sources. Reports providing
details following method 2. are rare.

A question an investor may ask is “how much drilling do we have to do before we can
reasonably expect a defined Indicated Resource?”.

JORC 2012 s 19, states that to predict geological continuity, maximum likelihood-based
statistical confidence intervals are developed. Interval estimates for the % of drillholes
having values of the variable of interest above a benchmark value are set. A level of
confidence that the interval contains the % of drillholes having values of the variable of
interest above the benchmark are also set for the expected grades in low-and high-grade
areas. Modelling of grade continuity assists in determining the amount of drilling needed
to update Inferred to Indicated Resource.

One of the principles governing the operation and application of the JORC 2012 is
Materiality. This principle requires that a Public Report of Exploration Results contains
all the relevant information that investors would reasonably require, and reasonably
expect to find in the report, for the purpose of making a reasoned and balanced judgement
regarding the Exploration Results being reported.

At any stage of gold exploration, investors are usually unhappy with the amount
of information provided. There is never enough drilling information. Apart from the
information that is publicly announced, experienced investors are always looking for
external information that can increase confidence in the investment.

At this stage, the starting bid and fair open market value of an exploration project is
hard to determine. The Banking community evaluates a project as a Possible, Probable
or Speculative buy.

Reporting of Mineral Resources: JORC 2012, s 20 presumes that the location, quantity,
grade, continuity and other geological characteristics of a Mineral Resource are known,
estimated or interpreted from specific geological evidence and knowledge, including
sampling. Mineral Resources satisfy the requirement that there are reasonable prospects
for eventual economic extraction, regardless of the Inferred, Indicated and Measured
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categories. From an investor point of view such a project is a project that has a reported
JORC Resource, a completed Bank Feasibility Study and is in production.

Exploration can attract investment at all stages. Before auction, every investor
is informed that inferred mineral resources (see Figure 2.1) have a great amount of
uncertainty as to their existence and great uncertainty as to their economic and legal
feasibility. Therefore. it can not be assumed that all or any part of an inferred mineral
resource will ever be upgraded to a higher category such as indicated or measured.
Prospective buyers are cautioned not to assume that mineral Resource will ever be
converted into Reserves.

From 1 December 2014, JORC 2012, s 29, requires Ore Reserves to be defined by
studies at Pre-Feasibility or Feasibility level as appropriate. The Mineral Resources
(Sustainable Development) Act 1990 (Vic) provides that subject to a mineral resource
being identified, it is expected that the holder of an exploration licence will work towards
preparation of a mineralisation report and ultimately establishing the mineral resource
to at least an inferred standard (see Figure 2.1) within the meaning of JORC 2012.

However, depending on compexity of a project, the estimated inferred mineral resources
may not form the basis of Pre-feasibility and Feasibility mining studies, except in rare
cases. Investors are usually cautioned not to assume that all or any part of an inferred
mineral resource exists or is economically mineable.

2.1.2 Exploration categories

Exploration companies are often broken down into three categories. It is essential to
consider these categories that are usually used by the investment and banking communities.
More information is available online from Productivity Commission Inquiry Report.

a. Greenfields exploration – relies on the predictive power of ore genesis models to
find mineral deposits in previously unexplored areas or in areas where they are not
already known to exist.

b. Grassroots exploration – when an explorer has a conceptual idea about where a
deposit might be and spends money to see if the mineralisation is really there.
Grassroot projects are the riskiest projects in the mining business.

c. Brownfields exploration – explorers look for deposits near or adjacent to an already
operating mine. The possibility that existing data might be used makes the risk in
brownfield exploration considerably lower than in greenfield exploration. Because
the facilities for mining and processing the ore are often already built and paid for,
the additional marginal capital cost for processing any new ore is very low.

After having delineated a deposit with drilling, the next step is opening a surface
or underground mine and extracting the rock mass by means of the special mining
techniques and procedures of mineral processing.

2.1.3 Information disclosure and validation of exploration results

Despite gold is not a critical commodity (Geoscience Australa), detailed information
on the verification of the gold distribution is extremely hard to find in open sources.
Mining companies provide drilling data and the employed methods recommended in
Table 1 of JORC 2012, p.26, but rarely share step-by-step calculations explaining how
exactly predictions were made, how uncertainty was managed, how the 3-D wireframes
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and vertices of the mineralised domains were digitised and how mineral resource models
were calibrated.

In the 1970s, members of some institutions2 and banks have played an important
role in encouraging exploration and mining companies to disclose more meaningful
information about ore resources and the applied methods of estimation.

One reason for this is that the literature and technical notes on gold prediction is
read and company announcements well monitored by investors and interested persons.
As previously mentioned, at the early stages investors have limited access to the data
necessary to take an investment decision. But not all. The reality is that some investors
informed better than others.

Any leak or reference or inaccurate statement (pessimistic or over-optimistic) may
lead to a rise or fall in the trading price of stocks and securities and provoke a query
from the ASX.

In some cases, this may also give rise to insider trading allegations where the information
was not disclosed to the broader market. Every gold company has some “security" rules
– no leaks. However, if requested, mining companies usually provide the actual drilling
data and some extracts from official production notes.

Grassroots exploration companies tend to operate privately and competitively, and
they are also not eager to reveal the methods they employ to find anomalies or hit
worthwhile targets, or how well or badly the employed methods have worked out. Since
the average cost of gold discovery is currently A$70/oz (Schodde, 2017a), exploration
is financed entirely by investors and once their cash runs out, they will have to rise
finance or stop. As a result, the average delay between discovery and mine development
in Australia is 13 years.

Another reason is that most of the large gold deposits located close to the surface
have already been discovered. There have been a decreasing number of World-Class
Tier-1 discoveries globally over the past 20 years. They are extremely rare (reported by
Centre for Exploration Targeting and MinEX Consulting).

The practical validity of the reserve estimation technique usually lies in a comparison
of estimates with the reconciliation phase which is a comparison of estimated tonnage
and grades with real measurements. A French independent software vendor Geovariances
defines the term reconciliation as: “checking the validity and robustness of any resource
estimate is a mandatory step to ensure models remain current and useful”. The company
states that avenues for validation and reconciliation are

1. geostatistical inspection of resource estimates, benchmarking against data inputs.
2. using past and current production data to improve the predictive performance of

models.
In Parker (2012) the term reconciliation is defined as a process that allows determination

of the ability of a mine to produce the tonnage and grade that were estimated in the
ore reserve. Refer to H.M. Parker, for precious metals mine a good annual reconciliation
between mine and mill is generally acceptable as 10%.

RSC Mining and Mineral Exploration Services from Perth offers reconciliation of
resource model with mine production, and mine production with mineral processing
information, which provides key information on the quality of the entire system.

Importantly, the exact reconciliation of Indicated and Inferred Resources (see Figure
2.1) is hardly possible. Detailed studies and reports on geological reconciliation in later

2https://www.finsia.com/
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stages (versions by Parker and RSC) are rarely published and even when published,
too few details are provided to enable a realistic evaluation of the prediction. Detailed
comparisons of geostatistical predictions (suggested by Geovariances) with reality are
also rarely covered in the literature.

Ideally, to verify prediction, the gold ore extracted from a particular block needs to
be closely monitored, a record made of every pass of a truck with continuous checking
the grade with at least an x-ray fluorescence analysis and other on-site techniques.
Then checking stock piles, conveyors, crushers and ball mills–all against the amount
of gold predicted and produced by smelter. This way, however, high cost and technical
complexity make exact reconciliation of gold the hardest task.

2.2 Background and Previous Work

The fundamental starting point for mine evaluation is to determine the characteristics
of ores to be developed and mined. To obtain these, successful exploration is required to
realise the enhanced economic returns offered at the start of mine development. Schodde
(2017b) lists reasons why new methods to drive the next wave of discoveries should be
found:

1. The decreasing efficiency of finding new deposits.
2. The average cost of a new discovery has increased to $70 per once.
3. A shift of investment from major to junior exploration companies.
4. A reduced rate of discovery of world-class gold deposits Tier 1.
5. A shift of investment from greenfields to brownfields exploration.
6. A reduced investment efficiency for the discovery of economic deposits.

2.2.1 Historic definitions of prediction

As early as 1870 the research into the existence of gold in the ground was kept confidential
by fearful authorities. It was believed that gold fever could potentially cause anarchy
in the small fledgling British colonies. Several scattered references were made in the
mining engineering literature to the need for statistics for predicting gold-bearing ores
from chemical assays. Hale (1881), for example, made a suggestion that the gain from
the application of statistics in the gold mining and milling business would be large.

In the 1900s the literature mentions a variety of predictive practices such as averaging
depth and area (Bradley, 1925), cross-sections (Richert, 1929) and grouping of assay
values in blocks (Solderberg, 1930). The results of these practices were usually employed
in the control of mining operations, accounting purposes, figuring depletion, calculating
depreciation and development charges.

Although mathematical principles were involved, the evaluation of mines was not
considered an exact science and wide experience was usually required in the selection of
methods and the interpretation of results in order to arrive at near-correct conclusions.
The accuracy of the final results, it was believed, would depend to a large extent upon
estimator’s assumptions, his experience and the soundness of his judgement.

Bradley (1925) and Solderberg (1930) noticed that these differences in judgements can
lead to serious problems in the initial evaluation of a deposit when the geologic resource
estimates are interpreted to represent ore reserves but later found to be misleading and
overestimated. From a modern science perspective, these methods were not mathematically
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correct in some instances, but most of them were used in the past and it was assumed
that the applied methods gave satisfactory results.

The purchase of a prospect was often dependant on the question of ore extension
because it was seldom that the ore was fully developed and the purchase price was
almost invariably based on prediction of the distribution. However, there was no way to
measure the reliability of the estimation. Solderberg (1930) mentions that a number of
modifying factors were often applied to make corrections when the estimate went wrong.

The first published studies on the use of statistical techniques for prediction of ores
appeared about 1920s. Wattermeyer (1919) discussed the application of the theory of
probability in predicting grades. The benefits of the involvement of statistics into reserve
calculation were considered by Harrison & Hanover (1929). The authors suggested the
application of graphical extrapolation and interpolation of ores by use of assay plans,
projections and cross-sections. A method of statistical grouping and weighting of assays
for predictive purpose was proposed in Jakson & Knaebel (1934).

In a number of technical documents in the 1970s, for example in Dowding (1976a), the
term geospatial predictive modelling is defined as analytical production of 3-D graphics
by using data from drillholes.
A considerable amount of modern literature has been published on spatial prediction.
According to Noble (2011) the traditional approach to mine evaluation is based on
collection of data, predicting spatial properties and physical characteristics of the mineral
occurrence, modelling the size, shape and grade of the ore body.

A number of published studies on spatial analysis and GIS systems suggests that most
applications are based on interpolation with synonymous with optimality predicting in
space using observations taken at known nearby locations. The objective of more recent
predictive techniques (Henley, 2001; Hengl, 2007; Gaetan & Guyon, 2010) is to assess
the likelihood of the distribution.

Another term found in the literature is geospatial predictive modelling (GPM), which
is rooted in the principle that the occurrences of the events being modelled are limited
in distribution. Hengl (2007) describes GPM as a process for analysing events through
a geospatial filter in order to make statements of the likelihood for event occurrence.

A more recent addition to spatial modelling, the term optimal prediction usually refers
to ore reserve estimation, the aim of which is a numerical or graphical model (Rossi &
Deutsch, 2014) that accurately predicts the grades and tonnage of ores to be extracted.

Some statistical literature on spatial exploratory data analysis, for example, Bivand
et al. (2013) link prediction to geostatistical data that could be in principle measured
anywhere, but typically comes as measurements at limited a number of observation
locations. In a study by Pimpler (2017) on the development of spatial statistical tools
and ArcGIS systems, the prediction is viewed as modelling relationships among data
variables associated with geographic features.

2.2.2 What level of accuracy of resource estimation is accepted?

JORC 2012, s 25 states that mineral resource estimates are not precise calculations,
being dependent on the interpretation of limited information on the location, shape and
continuity of the occurrence and on the available sampling results. A crucial question
can be asked then: “What is an acceptable level of resource estimation accuracy?”

Australian legislation does not mandate or recommends the level of accuracy for
estimation. However, the ASX disclosure of key assumptions underpinning mineral
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resources and reserves estimates suggests the following levels of estimation accuracy:
– Scoping study (greenfields and early grassroots exploration): a level of accuracy of

+/- 30 to 40%.
– Preliminary feasibility study (grassroots exploration and early stages of development):

a level of accuracy of +/- 20 to 25%.
– Feasibility study (pre-development and development stage): a level of accuracy of

+/- 10 to 15%

2.3 Classification of Methods for Spatial Prediction

To avoid the difference of opinion, the provided below notations and equation are
referenced and presented in the forms as they are in the original sources. A good review
of thirty-eight spatial interpolation methods can be found in Li & Heap (2008). The
methods most frequently cited in the literature are summarised in Table 2.1.

Predicting spatial continuity is generally solved by two methods: interpolation and
extrapolation. Interpolation is the mathematical function that gives the exact value for
every known control point, so that the surface it defines benefits all the known data.
Interpolation performs the task of prediction by estimating the values at unsampled
areas using data from observations within the same region. According to Rendu (1994),
since there are no ways of confirming the true values of the field away from the control
points, interpolation is viewed a type of spatial prediction.

Statistical methods used for resource estimation (in grassroots and brownfields stages)
are generally divided into the traditional geometric methods that are done manually on
plans or sections and interpolation methods (Sinclair & Blackwell, 2004).

A formal discussion of the state of interpolation requires some notations. Webster
& Oliver (2007) admit that nearly all currently known interpolation methods can be
represented as weighted averages of sampled data and usually share the same formula:

ẑa (x0) =
n∑
i=1

λiz(xi). (2.1)

Here ẑa is the estimated value of the primary variable at the point of interest x0, z is the
observed value at the sampled point xi, λi is the weight assigned to the sample point
and n represents the number of sampled points used for the estimation.

One of the most widely used in GIS applications technique is inverse distance , which
described in Hengl (2007) as a mechanical method. The term mechanical means that a
user is prompted to accept the default parameters suggested by a GIS package.

Inverse distance is a method that fits only the continuous model of spatial variation.
In some situations, inverse distance can perform as good as the statistical models. To
determining the weights, the inverse distances from all points to the new point are used:

λi (S0) =
1

dβ(S0,Si)∑n
i=0

1
dβ(S0,Si)

; β > 1. (2.2)

Here dβ (S0, Si) is the distance from the new point to a measured point, β is a coefficient
to adjust weights, λi is the weight for neighbour i. The higher the β, the less influence
posed on distant points.
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A method of predicting the values of a variable at points outside the region covered
by existing observations is called extrapolation. Burrough & McDonnell (1998) regard
this method as part of interpolation. JORC 2012, Table 1, s 3 states that the maximum
distance of extrapolation from data points should be defined.

A strong relationship between two variables can predict one variable if the other is
known. Isaaks & Srivastava (1989, p.33) admit that the simplest type of prediction is
linear regression.

The literature reveals a great number of interpolation techniques which are divided
into two main types: deterministic and stochastic:

• Deterministic interpolation creates surfaces from measured points, based on either
the extent of similarity or the degree of smoothing. It predicts a value that is
identical to the measured value at a sampled location and is known as an exact
interpolator.

• Stochastic methods incorporate the concept of randomness and provide both estimations
(deterministic part) and associated errors (Li & Heap, 2008).

The third mentioned in the literature type is called combined methods which are capable
of using both primary and secondary information.

Interpolation methods are generally classified as local and global approaches:
• Local methods in geostatistics predict the value of an unknown point based on

the values of neighbourhood samples (Hoerl & Kennard, 1970). Local methods
usually operate within a small area around the point being estimated and usually
capture the short-range variation (Webster & Oliver, 2007). However, more correct
definition of the term local refers more to the fact that only local information is
used, as opposed to global.

• Global methods (Isaaks & Srivastava, 1989; Burrough &McDonnell, 1998) calculate
entire dataset to generate prediction for a particular point. In Li & Heap (2008)
global methods use all available data in the region of interest to derive the estimation
and capture the general trends.

As previously mentioned, the traditional approach to mine evaluation is based on
the collection of data, predicting of spatial properties of the mineral occurrence and
modelling the ore body. Cressie (1989b) states that the data collected from different
spatial locations needs a spatial model that indicates dependence between measurements
at different locations.

Other definitions of predictive geostatistics can be found in David (1977), Webster &
Oliver (1992), Hengl (2007), Chilès & Delfiner (2012) and Bivand et al. (2013) where
the prediction is derived from the spatial structure called the variogram:

γ (x) = 1
2E

[
(Z (x+ h)− Z (x))2

]
(2.3)

Here E is the expectation (prediction), x ∈ R2 is a position vector and h ∈ R2 is a
separation vector. Equation (2.3) is only defined if Z(x) is an intrinsic random function,
which suggests that the increment Z(x+h)−Z(z) must be the second-order stationarity.
More information on stationarity can be found in Journel & Huijbregts (1978), Isaaks
& Srivastava (1989) and Diggle & Ribeiro (2007).

Good illustration of the application of variography to a real-world data can be found
in a study by Shi et al. (2000).



Chapter 2. Literature Review 18

Table 2.1. The spatial interpolation methods (Li & Heap, 2008).

Deterministic methods Geostatistical Univariate methods

Nearest neighbours (Clark & Evans, 1954) Simple kriging
Natural neighbours distance (Sibson, 1981) Ordinary kriging
Inverse distance weighting (Shepard, 1968) Block kriging
Regression models (Hardy, 1971) Factorial kriging (Goovaerts, 1997)
Trend analysis (Oldham & Sutherland, 1955) Dual kriging (Goovaerts, 1997)
Splines (Webster and Oliver, 2001) Indicator kriging (Journel, 1983)
Thin plate splines (Wahba & Wendelberger, 1980) Disjunctive kriging
Classification (Burrough and McDonnell, 1998) (Armstrong and Matheron,1986)
Regression tree (Breiman et al., 1984) Universal kriging (Matheron, 1969).
Kernel smoothing (Hoerl and Kennard, 1970) Model-based kriging

Geostatistical multivariate methods Combined methods

Universal kriging Classification combined with other methods
Probability kriging Trend surface analysis combined with kriging
Kriging with an external drift Lapse rate combined with kriging
Simple cokriging linear mixed model
Ordinary cokriging Regression trees with kriging
Indicator kriging Residual maximum
Colocated cokriging (Goovaerts, 1997) Likelihood-empirical best predictor
Simple kriging with locally varying means Gradient plus inverse distance squared
Multivariate factorial kriging Regression kriging

2.3.1 Steps of resource evaluation

A question might be raised: “is there any particular method by which the target must be
identified or the evaluation of Mineral Resources must be done?”

No. Any mandatory method of evaluation is not specified. However, the ASX Listing
Rules have the force of legislation being enforced under the Corporations Act 2001.
They are regarded as statutory regulations. That change came after the ASX became
a publicly traded company and questions were asked about it regulating itself. JORC
(2012) is part of the Listing Rules and has the force of legislation. As legislation, it only
recommends, rather than mandates. In practice, evaluation is being done by more than
three methods.

JORC 2012, s 19 states that reports must include the relevant information listed in
Table 1.p.26 that is material to an assessment.

JORC 2012, s 20 provides that the geological evidence and knowledge required for
the estimation of Mineral Resources. Public Reports must include sampling data of a
type, and spacings, appropriate to the geological, chemical, physical, and mineralogical
complexity of the mineral occurrence for all classifications [of Mineral Resources].

A number of recommended steps can be found in the geostatistical literature. Isaaks &
Srivastava (1989) recommend steps of evaluation, where the first objective is to determine
the location, volumes and grade of the mineralised zones. Next, the authors recommend
steps for mining stage to determine how the tonnage, grade and the economic feasibility
of the project will vary with the selectivity of the mining method chosen. To do this, it
is recommended accommodating the following aspects of three-dimensionality to a level
of precision which is compatible with an acceptable degree of financial risk:

i. An ability to define and represent geological boundaries with precision.
ii. A precise method of determining the volumes with algorithms for estimation of

grade within these volumes.
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Webster & Oliver (2007) outline an alternative, a two-stage concept of predicting the
value of an unknown function z(x) which can be made in two steps:

i. a modelling step based on measured data.
ii. a prediction step based on prediction model.
Hengl (2007, p.10) defines the steps of modern 3-D spatial prediction modelling as

the process which predicts values of a sampled variable over the whole area of interest.
It is assumed that the input samples are representative, a variable at some new location
s0 can be derived using a spatial prediction model:

ẑ (S0) = E {Z |z (si) , qk (s0) , γ (h) , s ∈ A} . (2.4)

Where z(si) is the input point dataset, γ(h) is the covariance model defining the spatial
autocorrelation structure, qk(s0) is the list of deterministic predictors, also known as
covariates or explanatory variables, which needs to be available at any location within
A.

According to the book of Hengl (2007) a spatial prediction model comprises a list of
procedures to generate predictions of value of interest given the calibration data and
spatial domain of interest. This concept is involved in many mapping, geo-coding and
spatial statistical packages available in the CRAN R library.

JORC 2012, Table 1, s 2, Data Aggregation Methods, suggests:
...in reporting Exploration Results, weighting averaging techniques, maximum
and/or minimum grade transitions (cut-off high grades) and cut-off grades are
usually material and should be stated.

JORC 2012, Table 1, s 3, Estimation and Reporting of Mineral Resources, it is
suggested that any explanation include:

...the nature and appropriateness of the estimation technique(s) applied and key
assumptions, including treatment of extreme grade values, domaining, interpolation
parameters and maximum distance of extrapolation from data points. If a computer
assisted estimation method was chosen include a description of computer software
and parameters used.

2.4 Geostatistical prediction: literature review

The thesis does not engage with geostatistics and does not provide a comprehensive
review of geostatistical tools. However, central assumptions in geostatistics will be
addressed.

The origins of geostatistics can be identified in Kolmogorov’s search for a method of
optimal interpolation in the 1930s. The prefix [geo] comes from geology. Geostatistics
(also known as spatial statistics) has its origins in mining and was firstly mentioned in
the study of Sichel (1947) on the application of the lognormal distribution in a gold
mine. This study was followed by the unpublished thesis of D.Krige (cited as Krige,
1951) on the application of regression analysis between sampling and blocks, which set
the stage for linear geostatistics.

In 1951, a mining engineer D. Krige (Krige, 1951) observed that samples taken close
to each other are more likely to have similar values than if taken farther apart. This
observation is the foundation on which geostatistics characterises values are defined in
3D space. According to Cressie (1989a), Krige had predicted areal gold concentrations in
a South African mine based upon large amounts of data which exhibited strong positive



Chapter 2. Literature Review 20

correlation. Krige showed that the over-and-under evaluation of blocks, can be explained
by statistical theory.

Matheron (1963) introduced a probabilistic interpretation to regionalised variables
theory (RVT) that led to the development of the emergence of geostatistics as an
ore reserve estimation technique in early 1960s in France and this spread worldwide.
His theory of regionalised variables states that any variable, which is related to its
position (i.e. exhibits spatial correlation) and support or volume in space, is called a
regionalised variable (more information on RVT can be found in Sinclair & Blackwell,
2004, p.10). The most remarkable contribution of Matheron was the construction a
theoretical framework for modern geostatistics that rests upon the random function
model.

Since then, many geospatial models based on that theory utilise an understanding
of the spatial relations of sample values within a mineral body. In fact, almost all
variables encountered in geospatial sciences can be regarded as regionalised variables.
Most regionalised variables in reserve estimation display two aspects:

i. Random, which consists of highly irregular and unpredictable variations.
ii. Structured, which reflects spatial characteristics of the regionalised phenomena.

David (1977) outlines the purposes of the RVT:
i. to express the spatial properties of regionalised phenomena in adequate form.
ii. to solve the problems of estimating regionalised variables from sample data.
Some tools based on RVT, for example kriging, has a number of advantages over

conventional spatial prediction techniques. Cressie (1989b) reports that kriging accurately
explains the process of developing a model for the correlation structure and use this
proposed model to predict responses at unsampled locations.

Predicted values are based on the proportion of total sample variability accounted by
random noise reports (Isaaks & Srivastava, 1989). That means the noisier the sample
set and the less the individual samples represent their immediate vicinity, the more they
are smoothed and the greater the associated uncertainty. This phenomenon is called
smoothness.

Another feature of the RVT-based techniques discussed in Isaaks & Srivastava (1989)
is that the weighting coefficients assigned to a sample are lowered to the degree that its
information is duplicated by nearby samples with little variability. This effect is called
declustering which helps mitigate the effects of the density of variable samples.

A number of researchers have reported that an integral part of geostatistical estimation
is that it predicts not only a value but also a measure of uncertainty associated with
the value. On a global scale, geostatistics has been successfully applied to ferrous,
non-ferrous metals and precious metals while in some countries its application has been
limited to base metals and coal. A good introduction to geostatistics can be found in
Sinclair & Blackwell (2004, p.181).

Modern geostatistical techniques override the limitations of numerical methods by
providing estimates together with a minimum error variance (Matheron & Kleingeld,
1987). The methods based on kriging utilise an understanding of the inter-relations of
sample values for quantifying two important geological concepts:

i. The inherent characteristics of the deposit.
ii. A change in the continuity of interdependence of sample values according to the

trend of mineralisation is a range of interdependence of sample values.
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Interpolation in spatial statistics usually is synonymous with a spatial prediction
method kriging, which Gandin (1974)3, called optimal interpolation.

Kriging is described by David (1977) as an optimisation technique of grade estimation.
Ord (1983) defines kriging as a method of statistical interpolation for random spatial
processes, which presents predictors that are linear in the observations. Cressie (1989a)
equates kriging with spatial optimal linear prediction, where the unknown random-process
mean is estimated with the best linear unbiased estimator.

According to Matheron (1963):

...kriging consists [of predicting]... the grade of a panel by computing the weighted
average of available samples...the suitable weights a1 are determined by

∑
ai = 1...

Danie G. Krige in Krige (1976) provides another definition:

...the multiple regression procedure for arriving at the best linear unbiased [predictor]
or best linear weighted moving average [predictor] of the ore grade of an ore block [of
any size] by assigning an optimum set of weights to all the available and relevant data
inside and outside the ore block...

Cressie (1989a) looks at various versions of kriging as an assumption about the mean
function change. Based on these quantifications, kriging performs estimation with a
minimum variance and an error of estimation both in local and global scales. None
of these properties is taken into account in the classical methods. Technical papers
also indicate that kriging techniques (different variants of kriging estimators have been
developed) mark a major advance in Resource and Reserve evaluation.

Good illustration case study and the application of modern structural analysis can be
found in a study by Tolosana-Delgado et al. (2019),

2.4.1 Assumptions

The main difference between classical statistics and geostatistics is the assumption of
spatial dependency. In this section, the greatest strength of interpolation - assumptions
are briefly discussed.

It has to be noted that there have been some disagreements between researches on the
definition of the discussed below assumptions – for different authors at different times
assumptions mean different matter.

Isaaks & Srivastava (1989, p.438) observe that interpolation necessarily involves a
number of assumptions about how the distribution behaves at points where it has not
been directly estimated.

Assumptions allow for the spatial interpolation methods to be formulated and to
create a surface that is intended to best represent empirical reality (Figure 2.2). Loosely
speaking, there are two assumptions:

1. the attribute data are continuous over space.
2. the attribute is spatially dependent, indicating the values closer together are more

likely to be similar than the values farther apart.
The assumption of stationarity is one of the most important concepts of statistical

prediction and the requirements for some interpolation methods. Figure 2.2 shows a
3(n.d.) L. Gandin and S. Kagan; in Journal of Meteorology, Lenindrad, 1974
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hypothetical 2-D distribution patterns of a metal, say, “M”. The surface is obtained
from kriging, in which the assumption is made that the statistical properties are the
same throughout the shown area.

Azpurua & Ramos (2010) state that spatial interpolation assumes the attribute data
are continuous over space. This allows the estimation of the attribute at any location
within the data boundary. Another assumption discussed by Azpurua & Ramos (2010)
is that the attribute is spatially dependent, indicating the values closer together are more
likely to be similar than the values farther apart.

Assume a model build by interpolation in the form of a surface (Figure 2.2) with
predicted grades (say, metal “M”) between the sampled points.

The model in Figure 2.2 suggests that gradational character with a pronounced effect
on smoothing exists between sampled points. The obtained surface predicts grade at an
unsampled “red” point as 1.6 M@gram per ton, which may or may not reflect the reality.
This effect is probably the major complaint made by some non-statistically oriented
people. From an end-user perspective, the contours indicate just trends. Hekmat et
al. (2013) observe that this approach to modelling results in excessive smoothing of the
data which masks the orebody’s true grade variability.

Interpolation creates optimal predicted surfaces and delivers a measure of confidence
of how likely these predictions are true. For example, statistical procedures behind the
contouring indicate that not much evidence is available to suggest that the existence of
grades, say -3 or +7 M@g/t are likely to happen. Despite the model in Figure 2.2 is being
smooth, the assumptions can make the degree of smoothness controllable. This feature
is used in many commercial GIS packages, which automatically provide predictions in
elegant visualised form.

From an optimisation viewpoint, the problem of predicting a value at or near “red
point” is solvable. However, in this scenario, continuous surface as shown in Figure 2.2
may not be created.

Note: hypothetically, a global solution can be found by a published in 2018 on CRAN
MlBayesOpt Bayesian R–package, which can tune hyperplanes. However, the author of
this thesis failed to find firm practical evidence of the claimed.

The most frequently mentioned and cited assumption is the stationarity. It simply
means that the mean and variance of values do not depend on location. Hengl (2007)
defines stationarity as a property of a variable to have similar statistical properties within
the whole area of interest. Oliver & Webster (2015) admit that stationarity underpins
the practicality of geostatistics, and it is an assumption that enables data to be treated
as though it has the same degree of variation over a region of interest.

Strong stationarity in the interpretations of Cox & Miller (1965, p.277): Z(x) is
stationary if for any finite number n of points x1, .., xn and any h, the joint distribution
of Z(x1), .., Z(xn) is the same as the joint distribution of Z(x1 + h), ..., Z(xn + h),
where Z(x) is a random function defined in 1-,2- or 3-space and x is a point in space,
not just the finite coordinate. This form of stationarity does not imply the existence of
means, variances, or covariances.

In Myers (1989) strong stationarity implies that the mean, variance and all other
distribution parameters are everywhere the same. From a geostatistical point of view,
this assumption is too strict and hard to be verified, so it is usually weakened.

Second-order stationarity is implied by strong stationarity. In Webster & Oliver (2007,
p.52) “weak” is defined in terms of the covariance function. It is assumed that the
covariance between two points is the same for a given distance and direction, regardless
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Figure 2.2. Example of a surface obtained from kriging. Triangles are the
measured points, the contour lines are at interval 0.2, grid referenced in every

20 metres. What is the value at the red point?

of which two points are chosen. It was believed that this assumption may lead to a more
general geostatistical analysis based on the variogram as a description of the variation.

David (1977) admits that the second-order stationarity is based on a condition that
the expected value E of the regionalised variable z(x) is the same all over the area of
interest

E (z (x)) = m, (2.5)

where E is the expectation. The spatial covariance of z(x) is the same all over the field
of interest. Then, the covariance becomes

E ((Z (x)−m) (Z (x+ h)−m)) = K (x, x+ h) = K (h) . (2.6)

Here h is the separation in space and the variance of the random function z(x) is

var (Z (x)) = E
(
(Z (x)−m)2

)
= K (0) (2.7)

and z(x) and Z(x + h) are the values of the random variable z at places x and x + h,
and E denotes the expectation.

In Oliver & Webster (2015) the covariance of z(x) depends only on h which is the
separation between samples in both distance and direction. Hence, z(x) is a function of
h. Therefore, the process has a covariance only if variance of z(x) is finite. However, in
reality a finite variance may not exist.

For some situations when the variations of grade rather than“just” grade is considered,
a finite variance may exist. For example, when the increments of the function

Z (x)− Z (x+ h) (2.8)

are considered, one can make the following assumption:

E (Z (x+ h)− Z (x)) = 0 (2.9)

var (Z (x+ h)− Z (x)) = 2γ (h) (2.10)

The form (2.10) is the variogram which is based on differences and provided by (2.9)
holds locally. In the rewritten form of (2.10) provided in David (1977):

var (Z (x+ h)− Z (x)) = E (Z (x+ h))− Z (x)− E(Z (x+ h)− Z (x))2. (2.11)
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If assumption of expected value E (Z (x+ h)− Z (x)) = 0, then

var (Z (x+ h)− Z (x)) = E(Z (x+ h)− Z (x))2. (2.12)

Equations (2.10) and (2.3) are the intuitive definitions of the variogram.
In some cases, the geostatistitians use a weaker definition of stationarity. If a random

function z(x) is a second-order stationary it is intrinsic assumption. Another word, it is
the assumption that the variance of the difference is the same between any two points
that are at the same distance and direction apart no matter which two chosen points.
In this case the variogram becomes

var (Z (x+ h)) + var (Z (x))− 2cov (Z (x+ h) , Z (x)) . (2.13)

The (2.13) is a more accurate formulation of an intrinsic assumption that can be
applied to reserve estimation. More information on the two assumptions can be found
in David (1977, p.94) and Oliver & Webster (2015, Ch.3). Second-order and intrinsic
stationarity are assumptions that allow predictions and assess uncertainty in the predictions
to be made.

Oliver &Webster (2015, Ch.2) discuss a case quasi-stationarity, which limits stationarity
to local areas, i.e. with sufficient data the assumptions can be applied locally.

2.4.2 To Smooth or Not to Smooth? Criticism

Unstructured orebodies should be smoothed. Structured orebodies should only been
smoothed only if there is not significant difference between the grades. An interesting
discussion on smoothness and nonsmoothness of drilling data can be found in the report
by Dr. Spero Carras (FAusIMM) in Carras (1990).

Criticism towards some interpolation techniques have been from financial institutions,
securities analysts and stock market experts. From an end–user’s viewpoint the model
in Figure 2.2 does not provide enough information to make investment decision.

For example, concerns about the accuracy of geostatistical prediction has been addressed
in several annual reports issued by the stock exchange companies. First small-scale
investigation conducted by Miskelly (1982) discusses a number of unsuccessful examples
of estimates. Miskelly (1982, p.13) points his critique towards at estimators: “...some of
the estimators appear to become fascinated by figures and to lose sight of their meaning”.

Some mining practitioners argued that geostatistics encounters the most difficulty
when applied to vein-type gold deposits. For example, Clow (1991) wrote:

“...this type of treatment [geostatistics] is very poorly understood by the average mining
engineer and geologist and, as a result, the output is frequently misapplied”.

The recent case related to the temporarily close one of the biggest gold mines in
Australia can give rise to opinions that the above statements are incorrect.

There have been complaints on inability if geostatistics to reproduce the surface
exactly, the inability to account for the physical processes that created the underlying
spatial distribution, for the approach to extreme values treatment and the absence of a
single workflow that can be applied to every spatial problem.

Some online forums contain discussions with examples of over-estimations of mineral
resources, many of which emerged from the inability of mines to match ore estimates
either in terms of grade or expected tonnage. However, such form of criticism is not
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constructive and do not pose alternative, positive outcomes.
Although there have been major advances in the development of spatial tools over

the past decades, there remain definite areas for improvement.
A variety of constructive criticism have been levelled at geostatistical methods by

some members of the geostatistical community for a number of disadvantages.
The irony is that criticism has mostly been aimed at the greatest strength of interpolation

– assumptions (section 2.4.1). Discussions can be read in Journel & Huijbregts (1978),
Shurtz (1985), Philip & Watson (1986), Knoll (1989), Armstrong (1994), Sinclair &
Blackwell (2004), Rossi & Deutsch (2014). It was admitted that some methods are
applied without sufficient regard to the accuracy of the available sampling grids, which
generally provide detailed information only along the drillhole leading to incomplete
information of parameters of continuity (see Figure 2.2).

Sarkar et al. (1988) argued that the conventional methods of estimation, in practice,
do not provide any objective way of measuring the reliability of the estimates. The
principal complaint made by Merks (1992) was that kriging tended to inflate expectations
for the continuity of mineralisation between measured data points.

Philip & Watson (1986) and Shurtz (1994) criticise the semivariogram definition, the
validity of kriging as the Best Linear Unbiased Estimation, the treatment of the extreme
values and the significance of the estimation variance. Concern was expressed that all
parameters of a semivariogram model are often determined subjectively (Remark 1).

Remark 1. The term subjectively also relates to technical jargon, which widely used
among the 3-D modellers. This relates to a phenomenon known as ”blown bubbles”,
or an automated process of building a 3-D solid, which sometimes manifested by some
software developers as a significant advantage, which is not entirely correct. Because
of the existence of several geomechanical, structural and hydrological constraints, the
gold-bearing ores are extracted partially, even if they have already been included
into the reserves, that is it, these constraints make the automatic conversion into an
accurate solid(s) impracticable. Even if such subjective solids are being created, they
are manually calibrated. In such cases, the wireframes are being rebuilt manually,
string by string. Hence, the vertices, nodes and edges are re-positioned.

It has to be noted that because of the existence of numerous geomechanical, structural
and hydrological constraints, the gold-bearing ores are extracted partially, despite the
inaccessible areas included into reserves. These constraints make the automated creation
of accurate solid(s) impossible. Even when such solids created automatically, they are
being calibrated daily. The wireframes are being re-built manually string by string,
and vertices and edges are re-positioned. However, this topic is usually avoided by
CAD-based GIS software presenters during presentations.

Many critiques have been towards poor interpretability of the regression coefficients
and the R2.

Kriging has been criticised for its dependency on the fitness of variograms, which
sometimes difficult to correct for smoothing of the estimates. Also, criticism has been
towards the cost of computation and complexity related to interpretation of results.

Sinclair & Blackwell (2004) admit high cost of estimations and the requirement both
highly trained personnel as well as substantial computing capability and demands close
attention to data quality and geologic interpretation. Loquin & Dubois (2010) describe
a case of computational burden of kriging. The authors admitd the poor interpretability
of its influence coefficients that depend on the fitness of variograms, which is some cases
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are difficult to correct for smoothing of the estimates.
Falivene et al. (2010) argued that in some cases traditional geostatistical methods

were incapable of fulfilling the requirements to accuracy because many deposits demonstrate
high degree of complexity. The complexity may be due to foldings, irregularities,
variation in grade or combinations of these.

Some researchers admit that the smoothness in the interpolated models is related
to the number of times it is mean-square differentiable. For instance, Chilés & Delfiner
(2012) found that the more times it is differentiable, the greater is the degree of smoothness
in the obtained models, i.e. the surfaces provided by kriging are often over-smoothed.

Adamu & Brandon (2014) admit that some geostatistical techniques consider mainly
spatial correlation in the datasets, but they violate the aspect of observing independence
of attributes and randomness in data distribution.

The shortcomings of stationarity have been examined and discussed in Goovaerts
(1997) and Webster & Oliver (2007) and criticised on many instances by Shurtz (1985),
Myers (1989); Armstrong & Champigny (1989), Sinclair & Blackwell (2002), Rossi &
Deutsch (2014), Oliver & Webster (2015) and many others for a property of a variable
to have similar statistical properties within the whole area of interest.

Particular criticism has been mostly towards second-order stationarity which, in a
critic opinion, makes some methods perform poorly when the data involves discontinuities
or nonlinear trends, i.e. when the same semivariogram applied over the entire area is
assumed to be a function of distance. Some authors believe that this is an assumption
about stationarity in the field. Instead of assuming that the variance is everywhere the
same, it is assumed that the variance depends solely on the distance.

The controversy over the strict and weak stationary assumptions has raged for many
years. Henley (2001) viewed stationarity as an unlikely property of a model suitable
for fitting data, which clearly vary in both expected value and variance from one place
to another. Henley (2001) states that it is impossible in principle to test a dataset for
stationarity, then the entire body of geostatistical methods built upon any stationarity
assumptions must be rejected as unscientific. Finally, he suggests seeking an alternative
model, which does not require any such assumptions.

Criticism has also been towards the degree of continuity of the regionalised function
from the behaviour of the semivariogram near the origin. The behaviour of continuity
gives information on the interval of distances for which the spatial dependence is high.
The theoretical reason involves the concept of:

i. Mean-square continuity.
ii. Smoothness.
iii. In some cases the differentiability of the regionalised function.
It is appropriate that basic definitions of these terms are provided in this section. The

following proposition characterises quadratic mean continuity:
a second-order stationary process at point s denotes

lim
h→0

E
(
(Z (s+ h)− Z (s))2

)
= 0 (2.14)

which implies the following condition:

lim
h→0

2V (Z (s))− 2C (h) = lim
h→0

2 (C (0)− 2C (h)) = lim
h→0

γ (h) = 0, (2.15)

where h in (2.15) is the distance and V is the support of the regionalised function.
Condition (2.15) indicates that unless C (h) → C (0), or γ (h) → 0 as h → 0 , the
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regionalised function cannot be continuous at location s.
The advantages and disadvantages of smoothness and differentiability and other properties

were discussed by Diggle & Ribeiro (2007).
In gold mining, the process of prediction with geostatistical tools is complicated by

heterogeneity introduced by the underlying geology, the erratic distribution and the lack
of reliable samples. In spite of these criticisms, the geostatistical approach is currently
considered to promote a more comprehensive understanding of the spatial phenomenon.

2.4.3 A link between prediction and reality

Matheron & Kleingeld (1987) admit that every ore body is unique and sometimes it is
only possible after mine closure to determine exactly what the ore body contained. A
number of problems related to the comparison of predicted and encountered data and
the validity of predictions were discussed in Wahlstrom (1964), Robinson & Lee (1967),
Dowding (1976b). Collectively, these studies report that apart from general geological
information, little success had been noted in the locational prediction of worthwhile
targets in the investigated mines.

Parker (2012) discusses situations when a small estimation error can cause a mine to
miss its cash flow targets. To understand and avoid sources of errors, it was suggested
to gather reconciliation data at various stages of the mining process. The author admits
that one of the main sources of error that should be considered is inaccuracy in the
estimation of resources and reserves.

The distribution of grades within an ore body is of mixed character, being partly
structured and partly random (Matheron & Kleingeld, 1987) and it is never so chaotic
as to preclude all forms of forecasting characteristics of the deposit which is never regular
enough to allow the use of deterministic prediction techniques.

In regard to the evaluation of gold deposit, a particular concern is the acceptance
of limited and poor input data. The question raised by David (1977) and Isaaks &
Srivastava (1989) was whether it was possible to reconstruct the probability distribution
from limited data before actual development commences? Finally, the following was
proposed:

i. The domain to be sampled must be defined.
ii. The properties of the material in the domain also must also be defined.
A study by King et al. (1982) reports that statistics should not be involved in reserve

estimation until all other factors such as geological continuity and contacts, lost cores,
sampling and assay errors have been identified, examined and assessed. Rendu (1994)
points out the statistics realises the need for a link between true geology and statistics
that is manifested at each step of a statistical study. However, Sinclair & Blackwell
(2004) argue that link is often complex and not well understood and connection between
real geology and geostatistics is often tenuous.

A very important aspect is that for the greenfields and grassroots projects accurate
comparisons between the statistical predictions with reality are technically impossible.
Rossi & Deutsch (2014) admit that an accurate model is one that reproduces well
the actual tonnages and grades mined. This check can only be performed in mine
development stage or if the mine is operating.

Studies by Sinclair & Blackwell (2004) and Carranza (2011) discuss a number of
attempts undertaken to bridge the gap between “true” geology and statistical predictions,
which is the quality of information to produce adequate estimates of worthwhile targets
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in the early exploration. The authors report that the amount of information, from which
reliable geological models were created was so low that any statistical inferences were
unstable.

The quality of sampling has also received considerable critical attention in surveys
conducted in Sinclair & Vallee (1993), Pistolski & Sinclair (1998) who point out that
all available geological information should be used more to improve the reliability of ore
estimates.

In return, Gy (1989) and Pitard (1993) refer to the theory of sampling which provides
an insight into the causes of errors that occur during assaying. In practice, the sampling
errors can never be eliminated due core loss and limited number of accessible samples.
Noble (2011) points out that there should be no prediction across a discontinuity with
a limited amount of information. A consistent sampling error may result in either
underestimation or overestimation.

JORC, 2012, s.18 suggests a solution: ... where assay and analytical results are
reported, they must be reported using methods, selected as the most appropriate by the
Competent Person by ... listing all results, along with sample intervals.

Results of obtained from the sample intervals method can be met in some Public
Reports and Technical Paper in the form of 2D cross-sections. The method is intuitively
understandable and widely used by both exploration practitioners and the investment
community.

Mine development gives the most reliable assessment of ore distribution. Another
question raised in the literature (e.g. David, 1977; Matheron & Kleingeld, 1987; Isaaks
& Srivastava, 1989) was that whether it was possible to reconstruct the probability
distribution from a limited drilling data before actual development commences? Finally,
the following was proposed:

i. The domain to be sampled must be defined.
ii. The properties of the material in the domain also must also be defined.
iii. The outset of a survey the dimensions of the units is their size, shape and orientation

of the samples.
Numerous examples of accurate predictions are known. For example, a study by

Chilès & Delfiner (2012, p.220) checks the accuracy of the geostatistical estimates and
revise them to obtain a model “reality–prediction" for the continuation of a tunnel at
Cault Clay. The observations in the service tunnel were found in good agreement with
the geostatistical model.

The problem of incorporating geology into geostatistics in the literature has been
accurate modelling with respect to geological controls of mineralisation, i.e. determination
of lateral limits that closely reflect reality. Most researches agree that only mine development
and geological reconciliation give the most reliable assessment of the difference between
prediction and realistic distribution.

As previously mentioned, detailed information on a comparison of predicted characteristics
with actual measurements is hard to find in open sources. At the exploration stage,
accurate reconciliation is not technically possible.

The major concern of a practitioner is that nearly all interpolation methods are
fundamentally averaging techniques and they produce results that are smoother than
reality. As a consequence, some engineers are sceptical of these methods. Logically, the
better the quality of the input data the better the results that will be achieved by an
analytic process.
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However, all currently known methods encounter the most difficulty when applied to
gold deposits - drilling data is never enough.

2.5 Evaluation and Valuation

In exploration context, the first step of evaluation is the process of defining and reporting
Resources. The second step of evaluation is financial reporting for the exploration for
and evaluation of mineral resources.

Clause 6. of Australian Accounting Standard AASB 6 20154, states that exploration
and evaluation assets shall be measured at cost.

Clause 18. of AASB 6 2016 states that exploration and evaluation assets shall be
assessed for impairment when facts and circumstances suggest that the carrying amount
of an exploration and evaluation asset may exceed its recoverable amount.

Wrong resource definition and consequently, reporting is subject to investigation.
Next stage is valuation, which is performed on a project to determine its financial

value considering VALMIN 20155 recommendations. It has to be noted that evaluation
is not valuation. The requirements to valuation of exploration and mining projects are
outlined in VALMIN Code 2015, which does not constitute legal advice.

During exploration, there is usually an increase in stock price as investors speculate,
based on drilling or other sampling results, whether the company has found anything.
As the company defines resources and releases further results, investors usually become
interested in the stock.

The Legislation does not specify a method by which resource estimation must be done.
The JORC, 2012 recommends its adoption as a minimum standard for Public reporting.
Exploration companies encouraged to provide information in their Public Reports which
is as comprehensive as possible.

The exploration and mining sectors are private, invested by individuals, banks, big
SuperFunds and mining companies. The outcome of the evaluation is valuation of a
project in monetary terms and determining its Fair Market value.

2.5.1 The outcome of evaluation: project’s fair market value

Fair market value (FMV) is the price that exploration project would sell for on the open
market. Micon International, define the term fair market value as the price which is
established in a free and open market by transactions between a willing and informed
buyer and a willing and informed seller, both of whom are acting without compulsion
and at arm’s length. Xstract Mining Consultants state that the fair market value often
implied by the market capitalisation of the holding company can vary significantly on a
daily basis.

In banking terms, an exploration property is these on which an economically viable
mineral deposit has not been demonstrated to exist. The real value of an exploration
property lies in its potential for the existence and discovery of economically viable
mineral deposit.

4Available at https://www.aasb.gov.au
5Available at http://www.valmin.org
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Another aspect is that the open market is often driven by “emotion” and speculative
information during the exploration phase. According to MinEx Consulting, Australian
valuers tend to overvalue grassroots exploration projects in average by 40%.

The time taken to make a discovery and turn it into a mine is, on average, from 10
to 15 years. During this period of time, the exploration activity and updated geological
data are closely monitored.

In 2018, more shares of Mineral Resources have been bought than sold by. The
bidding statistics, provided by some online platforms suggests that experienced bidders
are better informed than other bidders. Numerous open-sources, for example Australian
Securities & Investments Commission, WallSt6, report that leaks, inaccurate statements
or references lead to a rise or fall in the trading price of shares (ASIC 2019). Former
mining executive sentenced to serve 9 months for insider trading, Media release, Monday
11).

2.5.2 Methods used for mine evaluation

Journel & Huijbregts (1978) wrote that a need of the application of interpolation to
evaluation was historically motivated by the following:

i. Estimating the amount of worthwhile metals in an orebody.
ii. Selectively mine the orebody based on a set of observations at known locations.
These days, at the greengrass and grassroots stages, interpolation is used to establish

the shape, positioning of exploration target and approximate tonnage. At the mining
stage, interpolation is used to accurately determine the boundaries of a deposit, grades
and the tonnage.

A number of unique properties of spatial interpolation were discusses in Section 2.4.1.
The goal of interpolation is to create a surface that is intended to best represent empirical
reality. From a GIS-user viewpoint, the unique feature of most interpolation methods
is that their smoothing properties make it possible to use it in contour mapping and
cross-sectioning with isolines. This process is described in Webster & Oliver (1992),
Hengl (2007) and Bivand et al. (2013) as minimising estimation errors, calculating
optimal sampling distances, mapping and estimation of the size of the recoverable
resource.

A number of numerical techniques and procedures summarised in Table 2.1 such
as polygon and splines (Ahlberg et al., 1969, Baxter, 2004), triangulation, nearest
neighbours distance and inverse distance weighted (David, 1977; Annels, 2004) have
been used in the evaluation.

From 1 December 2014, clause 29 of the JORC, 2012 require Ore Reserves to be
defined “at Pre-feasibility or Feasibility level as appropriate that include the application
of Modifying Factors”.

In the Pre-feasibility phase, a number of traditional tools such as histograms, Q-Q,
P-P, cross-plots are used in analysing general statistics per domain. Variograms are
usually used for understanding the geometrical parameters of an ore body. The assumed
local confidence intervals are used for resource classification and reports.

In the Feasibility study phase, several interpolation techniques such as Inverse distance
weighted interpolation (IDW) and kriging help in building a 3-D model and determine
the volume/ tonnage, economic cut-off grade, i.e. evaluate recoverable reserves more
precisely. Infill drilling updates are used to improve understanding of spatial uncertainties.

6A commercial graphical investment analysis https://simplywall.st/
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In the Production stage kriging based on updates assists with detailed evaluation of
grade to optimise mine planning. The grades obtained from stopes and stockpiles are
compared with the previously predicted grades.

The publicly available Exploration Reports in the form of Table.1, JORC 2012 show
that IDW and kriging have been the most used methods for the evaluation. Some
previous studies such as that conducted by Li & Heap (2008) found that kriging methods,
as a predictive tool performs better than other methods, with only a few exceptions.

2.6 Machine Learning approaches in mining engineering

Recent developments in optimisation and machine learning (ML) have led to the idea
that many mining problems such as the efficiency of equipment, scheduling and spatial
variability can be solved with the power of machine learning. Many recently reported
experiments have established the ability of machines to learn and automatically process
data to identify potentially anomalous regions.

Artificial Intelligence (AI) is the established name for the field, but the term artificial
intelligence is a source of much confusion because artificial intelligence may be interpreted
as the opposite of real intelligence (Poole & Mackworth, 2017).

Ever since computers were invented, people have wondered whether they might be
made to learn. It is not yet how to make computers learn nearly as well as people learn,
stated in Mitchell (1997). With the increasing amount of data being collected universally,
machine learning (ML) systems are becoming more popular and are increasingly using
data mining methods to detect patterns of anomalies. An anomaly in ML is an observation
or a pattern of observations that does not conform to the expected normal behaviour of
the data. It is believed the adoption of AI and ML as an exploration tool is inevitable.
Two questions to be posed: What amount of value to geological and exploration models
adds the involvement of AI? Is there a false reliance on the models being produced by
AI?

Exploration is inherently risky, but, considering some economically disastrous resource
estimates, are the claims that ML aid in mitigating risk valid?

Recent experiments described in Harrington (2011) have established the ability of ML
to automatically identify spatial clusters, form prototypes, identify anomalous regions,
recognise correspondence patterns in spatial variations, interpolate and extrapolate over
multi-dimensional relationships and map their spatial variation.

A further unique feature of the ML is the ability to relate these discoveries to other
geologic, geochemical and lithological interpretive objects. The most frequently mentioned
in the mining literature method of ML is the artificial neural networks (ANN) technique,
which has an information processing structure consisting of relatively simple processing
elements, similar to the neuro-cells in the brain. Just like the brain, the ANN learns
from training repeatedly on a set of data.

In supervised learning, the neural network shows both input data and the desired
output data. After each trial, the ANN compare its own output with the correct
output, corrects any deficiencies, and tries again, iterating until output error reaches an
acceptable level. Analysis of the development of AI techniques allow another question
to be posed:

“can artificial intelligence produce a model from which new targets, trends and new
groups of clusters can be identified, pointing a rig operator towards locations where gold
occurrences might be uncovered?”
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2.6.1 ML-based techniques in mining engineering

This section reviews published sources on the application of machine learning (ML) and
other artificial intelligence (AI) techniques to the problem of exploration targeting.

There is growing excitement that AI and ML will aid in exploration and help us
uncover new deposits. Interest in ML has been growing steadily, and many mining
companies are aware of the potential impact AI can have on the results of exploration
and extraction.

In early stages of mining, a sufficiently large drillhole dataset is not usually available
for accurate evaluation and setting fair value in the open market. However, this limited
data cannot be disregarded because at all stages of evaluation a “go” or “no-go” decisions
are required to be taken. It was believed that AI systems, would become an integral
part of the evaluation in the investment decisions for explorations projects.

The late 1980s through 1990s witnessed rapid growth a number of geocomputational
developments. Ways unlock the predictive mapping capability of ML were investigated
by Harris (1989) and McCammon (1989). Trends in ML for resource mapping were
surveyed in an extensive study by Bonham-Carter et al. (1998).

Hagens & Doveton (1991) explored an application of the cerebellar model articulate
controller to a two-dimensional surface interpolation problem with encouraging results.
The authors showed that the extension of the neural model to fuzzy logic permits multi
dimensional and general-purpose capabilities that are not possible with lower-dimensional
conventional mathematical techniques. The need to examine Al-based techniques in
dealing with qualitative information in geostatistics is discussed in Dimitrakopoulos
(1993).

An approach to modelling of spatial data using NN was described in Clarici et al.
(1993). Wu & Zhou (1993) reported encouraging results within these limitations for
solving generic ore-reserve estimations by NN. With the proposed technique, higher
precision of generated interpolations, classifications and extrapolations were possible
together with faster learning.

Kinnicutt (1994) describes a system called NOMAD which could be used for 3-D
stratigraphic characterisation of a deposit to create ground profiles from borehole data.
The authors found that this could be done by combining geostatistical and knowledge-based
approaches, i.e. the statistical interpretation is combined with subjective data entered
by the user. The use of ANN for classification of mineral deposits was considered by
Singer & Koude (1997). Yama & Lineberry (1999) presented an ANN model for learning
the spatial continuity for predicting values for given coordinates. The authors studied
the "trainability" of ANN for normally distributed geologic data. The predictive power
of ANN was compared to kriging on the same sub-regions. The authors found that
the trained networks performed satisfactory and the developed model was capable of
learning from a training set and predicting the unseen validation set. A set of examples
was used to tune the parameters of the selected classifier.

Much of ML use in the described methods fell under supervised learning technique.
Collectively, all these studies outlined enormous potential of ML and explored what ML
can and cannot do.

Researchers believe that ML is valuable for extracting patterns from large and complex
datasets. Investigations into spatial analysis with ML has especially been active over the
last decade and a large number of applications to model geological data for the purpose
of predicting the presence of commodities have been proposed.
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Several solutions to probabilistic modelling with the application of ML techniques such
as functional approximation, weight of evidence, parameter fitting can be found in the
study of Barnett & Williams (2006).

As machine learning gets deployed in decision-making situations the ability to estimate
error become essential. Skabar (2007) reports results of applying Bayesian learning
techniques to the production of maps representing gold mineralisation potential over
the Castlemaine region of Victoria. The application of Bayesian approach shown that
optimisation of parameters such as the weight decay regularisation coefficient can be
performed using training data alone, avoiding the noise introduced through split-sample
validation.

Carranza (2011) discusses a number of knowledge-driven, bivariate and multivariate
data-driven computation of spatial associations between known deposit-type locations
and spatial evidence. The study identified the existence more than 150 journal articles
and conference papers related to the application of ML to spatial modelling. An answer
“which of the predictive techniques is the most efficient, therefore has the best chance
of leading to ore deposit discovery?” is looked for.

Melkumyan & Ramos (2011) took a machine learning view to the problem of resource
evaluation. This study describes the use of a non-parametric Bayesian method, leading
to parameter estimation for solving the problem of the quantification of the uncertainty
of measurements obtained from multiple sources. The squared exponential covariance
function was applied to constructing a geological model using chemical assays of drill
chips taken from exploration drillholes.

It was shown that through Bayesian learning, the parameters of the investigated data
were obtained by optimising a parameter, which the authors called marginal likelihood.
Another contribution of this study is that the data fusion mechanism continuously
updated data as more drilling data become available. This approach allowed a comparison
of different statistical models using different covariance functions.

A document search through Scopus revealed more than 600 modelling efforts published
between 2012 and 2018 on using Bayesian learning. This type of learning was applied in
GIS-related phenomena such as defining important variable relationships. Importantly,
Bayesian spatial modelling does not require a Gaussian spatial process and is more
flexible in generalised linear modelling.

An automated geostatistical interpolation method called Empirical Bayesian kriging
was explored by Krivoruchko & Gribov (2014). It has to be noted that the reviewed GIS
methods based on Boayesian learning, were fast and provided smoothed surfaces.

Zuo et al. (2011) described results of the application of support vector machine
(SVM), a supervised learning algorithm to mineral prospectivity mapping. Despite the
obtained with R results indicated the usefulness of SVM as a tool, it was found that
weights for each (WofE) prediction approach provided higher predictive accuracy.

A study by Rodriguez et al. (2015) draws attention to a number of crucial issues
related to the application of different ML classifiers such as classification trees, ANN,
SVM and random forest. The study analyses statistical significance of the differences
between the performance of these methods and sensitivity to data set size reduction and
noise.

Probably one of the most interesting approaches to targeting exploration efforts was
proposed by Joly et al. (2012). This study stands out as a topic gaining our interest,
because this study was devoted to gold prediction for efficient drill targeting, filters out
human bias and prioritise areas for hitting promising targets. The objective of this study
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was to minimise human bias to make the decision on whether a target makes sense or is
real. A number of measures were employed to evaluate the spatial associations between
known deposits and predictor maps to establish weights for each predictor layer. Then
these layers were combined in a predictive map using WofE approach. Unfortunately,
source codes have not been provided. Abedi et al. (2013) proposed a method of reducing
the cost of exploratory drilling by the application of a fuzzy knowledge-driven method
called multi-criteria decision making (MCDM) technique. Ducart et al. (2016) describe
the application of unsupervised learning to multi-source classification for mapping iron
oxides.

A recent study by Desharnais et al. (2017) discusses the particular challenges facing
the application of ML to the problem of exploration targeting. A potential workflow that
can be applied to most of ML techniques to exploration targeting such as a node–by–node
ore/waste classifier is proposed. It is admitted that proper validation, verification and
the application of basic geological principles into computation will help limit spurious
results resulting in drill targets are optimised for discovery.

The literature suggests that careful selection of the appropriate ML approach is
needed to ensure the best possible results. Exploration crew feel or can estimate the
distance beyond which statistical estimates are unreasonable. The ML, in contrast, may
automatically point at a single gold anomaly located far beyond the exploration property
ignoring faults and lithological boundaries.

The reviewed studies have exclusively been focused on supervised ML and computing
a global solution, failing to address unsupervised and reinforced ML, which in some cases
can provide results with a higher degree of precision. Since cloud SQL, storage, real-time
iteration and import of geological datasets directly into multi-platform compilation
system were not available, reproducing research results can be challenging even for
IT-oriented researchers.

Another observation is that the visualisation, the essential foundation of any good
exploration program, may appear, is undervalued in some studies, although all authors
use 2-D images as an important visual component of their studies.

2.6.2 Other ML applications in the mineral industry

The late 1990s and early 2000s represented a period of a significantly increased number
of publications on the application of ML to solving spatial problems. This subsection
reviews ML techniques which have been developed for solving various important problems
such as site characterisation, classification of rocks, development of underground openings,
ground support and estimation of earthworks.

Many studies have been published on the application of ML in rock mechanics.
Dershowitz & Einstein (1989) studied and discussed opportunities for improvement in
rock mechanics practices such as rock fracture flows, rock wedge stability and numerical
modelling through the use of ML. Other applications of ML to geologic roof classification
and longwall stability prediction were surveyed by Lee & Sterling (1992), Cardon &
Hoogstraten (1995) and Zhang & Bhattacharyya (1995).

A significant step towards the use of ML to manage ground conditions was made
by Millar & Hudson 1994) who outlined the theory of AI behind the use of ANN in
monitoring rock mechanics performance. An interesting approach to blast damage is
introduced in Yu & Vongpaisa (1996) with special reference to mining operations for
assessing damage by incorporating the vibration level, rock properties, site characteristics
and the effects of ground support systems.
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A number of AI-based systems have been proposed for geomechanical applications by
Rehak et al. (1985). A tool for analysing failures and slope stability was introduced in
Grivas & Reagan (1988). Ghosh et al. (1987) proposed an AI application for deciding on
spacing for supporting coal mine roofs. Zang et al. (1991) applied ANN to the estimation
of coal mine support. In a study by Harvey & Fotopoulos (2016), the performance of
naïve Bayes, k-nearest neighbour, random forest and SVM were compared to assess
geological types of rock. Random forest was found as the best performing approach.

Some ML systems found their practical application in the development of tunnelling
in coal mines. Tajdar (2006) reported that ANN were suitable for predicting the ultimate
pile bearing capacity in identified area of the texture of soil. The authors showed that
the proposed ANN had a better operation in comparison with commonly used methods.

There is a considerable amount of literature on the application of ML in mineral
processing and high-dimensional automation. AML–based assessment of the effectiveness
of mineral processing was studied in Hodouin et al. (1989) where trained ANN were
used as adaptive neural controllers for real-time control of processing plants. Several
fundamental studies of the use of ML for tuning machines and equipment were provided
by Hales & Ynchausti (1992). The authors propose an application of ANN for learning
complex non-linear relationships involved in SAG mill.

Gouws & Aldrich (1996) introduced an AI-based back-propagation algorithms to
exploit information from digital images of the froth phase of flotation plants. The study
explores solutions to the identification of control decisions necessary to maintain optimal
operation of mineral processing.

Tolwinski & Underwood (1992) propose an algorithm for the determination of a
production schedule for an open pit mine that satisfies all principal physical constraints
required by a realistic mine design. The authors proposed a sequential optimisation
model that describes evolution of an open pit mine over time in a natural way. The
authors found that the proposed model accommodated most of the constraints that a
real extraction schedule must satisfy.

In our view, some of the described techniques for solving spatial variability have
been too computationally demanding, time-consuming and in some instances were not
supported by validation. It appears that the research to date has tended to focus on
supervised learning. Although many of the described systems were simple prototypes,
some systems were progressing beyond the developmental prototype phase. Review of the
literature found the most frequently used ML techniques have been ANN, Fuzzy systems,
Support Vector Machines and Bayesian Methods. WofE approach was a preferable
method for geologically oriented authors. Regularised and Shrinkage, Kernel and Gradient
Descent methods have not been considered.

Review of the published method showed that in all ML applications, cross-validation
was used as an explanatory tool. To assess the optimal value of the different parameters,
the predictions were derived from all possible parameter combinations and were evaluated
using the Mean Square Error (and other measures of performance) using a cross-validation
procedure. The best model was the one with the lowest MSE.

There is a significant commercial interest in developing AI tools that find minerals to
extract, speed up the exploration and identify the most realistic economical scenario for
the project. A study by Desharnais et al. (2017) on the future of exploration targeting
using ML concludes that although ML is a relatively new technique, many exploration
companies are excited about the prospect.

Search through Scopus and Web of Science revealed a large number of studies on
managing geological heterogeneity with unsupervised learning. For instance, Cracknell
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and de Caritat (2017) examined the application of UML to highlight areas that potentially
host previously unrecognised Au mineralisation.

2.7 A Review of R–Packages

Where new tools, which can help improve the efficiency of discovery of new deposits
should be looked for?

For over 20 years, R has had an increasing number of contributed packages for handling
and analysing spatial data. Since this thesis investigates the application of regression
methods to solving high-dimensional problems, the implementation of the R-language
for statistical computing and visualisation is seen as an essential component required for
the design of a spatial method, based on penalised regression.

First, spatial modelling with R is supported directly by the contributed add-on packages.
The user often meets a problem: when R loads a new package, errors can appear due
to conflicts between packages, that is, several packages might have functions named
similarly.

R–default conflict management system usually gives the most recently loaded package
precedence, but not in all cases. R-environment produces a warning if that new package
contains any functions that are already present in the system. But, again, in some cases,
it is hard to detect conflicts, particularly when introduced by an update to an existing
package.

Therefore, another raised question was “how to find out which packages are potentially
conflicting?”

A review of spatial analytical tools and methods of handling spatial data through
CRAN website and open-source libraries revealed that the coverage of R-packages ranges
from standard techniques to new developments. A few R for spatial interpolation
packages are available for download from CRAN: gstat, sgeostat, fields and deldir.
Several interesting statistical R-packages and solutions to spatial prediction and visualisation
have been found in Bivand et al. (2013).

Bivand et al. (2013) recommends meuse.grid interpolator, packages idw and spatstat
for Inverse Distance Weighted. A function lm is suggested for spatial prediction with
linear regression. A function predict is recommended as the provider of confidence
intervals for a given confidence level. The authors recommend considering a multi-variable
gstat.cv function. A study by Paciorek (2008) suggests functions mgcv and SemiPar
to fit penalised likelihood smoothing models rather than doing kriging.

Two interesting mapping packages sp and sf appeared on CRAN at the end of 2016.
However, they are under very active development and a little number of examples of
successful applications are available.

Since this thesis deal with large multivariate data set containing a number of variables
superior to the number of samples, attention has been paid to the packages based on
penalised regression.

At the beginning of 2016, CRAN published a penalised regression-based clustering
package prclust, in which unsupervised clustering is performed through penalised
regression with grouping pursuit. The built-in cross-validation provides an approximately
unbiased estimate of the prediction error.

The glmnet package was suggested by the R Studio Community and Machine Learning
libraries. The packege is described as efficient for solving complex high-dimensional
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problems. The package is described in details in Friedman et al. (2008), Tibshirani
et al. (2010), Simon et al. (2011) and presented as fast algorithms for estimation of
generalised linear models with convex penalties. This package is for making a variety
of predictions from the fitted models and fitting multi-response linear regression, is a
package that fits a generalised linear model via penalised maximum likelihood. By
default, 10-fold cross-validation is used to find the best model among the competing
models.

Loosely speaking, glmnet is the R package that fits generalised linear models penalising
the maximum likelihood with both the LASSO, ridge and also the mixture of the
two penalties (the elastic net). To determine the minimum the glmnet uses cyclical
coordinate descent.

CRAN suggests function mvtnorm to compute multivariate probabilities, quantiles,
random deviates and densities as an efficient add-on to glmnet. Another potentially
promising package was matrix which supports many classes of matrices, including
symmetric, triangular, diagonal, both dense and sparse matrices and with pattern.

No precedents of a conflict between the selected packages have been discussed in the
literature and online sources.

2.8 Data Analysis

The literature indicates that today, hardly any decision is made without the help of
some sort of data. However, mistakes are made. For this reason, the art of extracting
nontrivial information from data is bound to take major importance. This is the purpose
of data analysis.

This is focused on three particular aspects of data analysis: classification, clustering,
and pre-processing.

Classification (usually supervised learning): this problem is one of the most widely
studied in the field of data analysis. It may be necessary to be able to guess a characteristic
using the features. A dataset is separated into several groups, called classes, according
to one of its features. The goal of supervised classification is to elaborate an algorithm
to assign a new observation to one or several of the classes. A supervised learning
algorithm analyses the training data and produces an inferred function, which can be
used for mapping new examples. An optimal scenario will allow for the algorithm to
correctly determine the class labels for unseen instances. More information, examples
and source codes can be found in Harvey & Fotopoulos (2016) and Pimpler (2017)

Clustering (unsupervised learning): the problem here is less definite one than the
supervised classification problem. It consists of finding “clusters", that is to group the
records by similarity. The goal of clustering is to find homogeneous subgroups within
the data. Intuitively, patterns within a valid cluster are more similar to each other
that they are to a pattern belonging to a different cluster. Another word, similarity
between observations is defined using some inter observation distance measures including
Euclidean and correlation-based distance measures.

Peter Williams (see Williams, 2002, sec.4.1.) corresponds unsupervised learning to a
form of probability density estimation. He described the application of the generative
topographic mapping method to a high dimensional data visualisation where observations
were modelled as noisy expressions of the state of underlying latent variables.

Other examples can be found in Kiaei et al. (2015) on reservoir characterisation,
Ducart et al. (2016) on mapping iron oxides with UML and in Cracknell & de Caritat
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(2017) on catchment-based gold prospectivity analysis.
Pre-processing. Prior to applying a clustering algorithm, it is necessary to perform

pre-processing. When the characteristic can be numerically encoded (for example,
distances between samples or gold grades in g/ton), different units in which the data is
entered might induce different behaviours of the clustering algorithms.

It is now sensible to discuss “clustering” technique as the appropriate type of data
analysis for solving such a complex prediction problem as exploration targeting.

The term cluster analysis is about discovering groups in data and it is the generic
name for a variety of procedures that can be used in ML to create classification (Everitt
et al., 2011). Cluster analysis finds clusters in the data such that observations are as
“similar” as possible within clusters, and as “dissimilar” as it could be between clusters.
In more recent literature, for example in Henning (2016) the process of clustering is
described as the unsupervised classification of patterns in data.

The last three decades have witnessed a huge growth in developments in clustering.
Thus, the number of published applications on this type of analysis in all scientific fields
has doubled approximately once every four years, and thus the rate of growth is much
faster than of even the most rapidly grown disciplines.

The literature suggests two reasons for that rapid growth:
1. the development of data mining and
2. solving clustering as a scientific problem with the AI tools.
A survey on clustering found that cluster analysis is usually employed in empirical

sciences for the summarisation of datasets into groups of similar objects, with the purpose
of facilitating the interpretation and further analysis of the data. More recent studies
point out that cluster analysis is of particular importance in the exploratory investigation
of highly complex datasets such as drilling assays.

Importantly, cluster analysis is usually used in situations where clustering information
is not observed on the data points and one wants to get this information from the data.

In this thesis, cluster analysis is a very important component of the designed UML
system for clustering homogeneous observations from drilling assays.

Another frequently cited technique is the clusterwise regression analysis described by
Späth (1979) and DeSabro (1989), which is used for studying the relationship between
a dependent variable and a set of explanatory variables which have observations on a
sample of objects. The concept is that if the samples come from different populations,
the variable indexing the populations also affect the dependent variables. It was found
that the regression should be performed on individual populations separately through
the corresponding sub-samples observed, or by including the population effect in the
model to make valid or more reliable statistical inference.

Method 1, developed and tested in Chapters 3 and 4 is focused on a specific type
of the clusterwise regression analysis. It is a method that iteratively clusters data into
clusters according to the available regression pattern and then updates the regression in
each cluster simultaneously until some specific stopping criterion is attained.

Conventional regression techniques are usually (often successfully) applied to homogeneous
observations. However, the underlying geology and the mineral content are examples
where the observations are not homogeneous. In this way, another method, known as
clusterwise linear regression is considered for overcoming the heterogeneity problem in
regression analysis.
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2.9 Summary of Chapter

Australian laws regard exploration and then mineral extraction as part of the overall
mining process. Mine evaluation has remained to the present time one of the most
discussed in the technical literature topics and the one, which many experts have sought
consensus for many years.

A survey of published sources found that the primary goal of spatial analysis is often
viewed as prediction of the spatial process at locations, where the process is not observed.
Statistical methods interpolate spatially referenced data and allow the prediction of
grades for arbitrary points in the area of interest. From these predictions, spatial models
are created. However, opinions regarding the accuracy of some techniques appear to be
debatable.

Spatial prediction or spatial interpolation aims at predicting values of the target
variable over the whole area of interest and results in statistical plots or maps. The
issue is that geological, litholigical and associated physical properties of ores are not
distributed isotropically. This principle is not addressed well in some interpolation
algorithms. In some cases, is forms basis for complaints about the accuracy of statistical
prediction. Statistical methods can be very efficient on large datasets of base metals,
massive sulphides, potash, etc., but they may not provide an accurate prediction of the
localised or erratic gold occurrences.

Australian legislation does not outline the method by which evaluation must be done.
However, the business literature suggests that ores and geological constraints have to
be assessed by more than one computational method. There has been a significant
commercial interest in developing new techniques that increase chances of discovery,
speed up the exploration, minimise drilling cost and identify the most realistic economical
scenario for a project.

Search through Scopus, WoS bibliometric tools revealed an emerging trend: solving
real-world problems with artificial intelligence is one of the fastest growing fields of
academic research. For example, the research into the application of unsupervised
learning to real-world problems has grown in 2015-2018 almost twice as fast as research
overall each year between 2010 and 2015.

However, despite a certain rise in the involvement of AI in solving mining problems,
there is the lack of fundamental studies on predicting spatial distribution of the gold,
optimisation of drill targeting and problems related to deposit evaluation with ML in
early exploration stages. ML approaches are among most promising to be applied to the
prediction of exploration targets.

The review of studies stored online in Scopus and WoS platforms revealed that there
were no precedents anywhere in the literature on solving gold prediction with NSO.
Search through forums and discussions related to solving nonconvex problems held on
the ResearchGate platform, have not revealed clear precedents on this matter.

It is revealed that spatial variation of the gold can be formulated as a nonsmooth
nonconvex optimisation problem. Another revealed problem relates to the visualisation
of the predicted results generated by AI. Highly detailed visualisation of the underlying
mineral content at the grassroots/ brownfield stages is important for the identification
of exploration targets and delineation of resources to confirm that the benefits exceed
the cost of the exploration.

The remoteness of exploration sites demands the application of free AI-based software
applications that can provide exploration teams with effective solutions as to manage
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the exploration data at remote areas and how drills are targeted.
For the identification of gold exploration target zones and, consequently more efficient

evaluation of a resource, the problem of extracting hidden information from a drill-core
assay and forecasting the behaviour of unseen structures can be tackled by two predictive
methods:

1. Reformulating problem as a regression problem using nonsmooth optimisation
approach.
Goal: development of machine learning (clusterwise linear regression) model for
predicting x, y, z coordinates and grades of potentially worthwhile exploration
targets. The method is designed for greenfield and brownfield exploration as
well as less-explored regions.

2. Reformulating problem into a high-dimensional convex optimisation problem,
in which the penalisation of parameters minimises generalisation errors in
dimension reduction.
Goal: development of a method, based on LASSO penalisation. The method is
designed for the application in any exploration and mining stage.
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Chapter 3

Methodology

This chapter is motivated by a need for a method that provide a view of the hidden
characteristics of gold mineralisation by extracting information from drilling data.

3.1 Nonconvex Nonsmooth Optimisation

Progress in the machine learning technologies is enabling highly precise data-driven
predictions that allow one to make decisions based on these predictions.

The field of optimisation is very broad and has many applications. In general,
optimisation is the search for an optimal valid solution with respect to a given objective
function. The literature suggests that optimisation is making possible the analysis of
high dimensional geological datasets.

Optimisation problems can be classified as convex or nonconvex. In a simplified form,
the two types of optimisation and their objectives are shown in Figure 3.1.

Convex optimisation means that the objective function and a feasible set are convex.
Therefore the search area is convex. In a strict convex case, there exists exactly one
minimum, moreover it is located inside the search area.

Nonsmooth nonconvex optimisation (NSO) is viewed as one of the most difficult tasks
in optimisation. It refers to the general problem of minimising or maximising functions
that are typically not differentiable at their minimisers or maximisers. A nonconvex
problem is usually much harder to solve.

Figure 3.1. The objectives of convex and nonconvex optimisation.
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In optimisation, each variable takes a numerical value and the list of variables can
consequently be written as a vector x ∈ A ⊂ Rn where n is the number of variables.
The vector x is also called a feasible solution.
The quality of a given set of variables is measured with a function q: A → R. The
higher the value of the function q the better the quality of the parameters. The goal of
optimisation is to maximise the quality.

The function q is also sometimes called fitness function. Alternatively, it is possible
to define a cost function c: A→ R. In this case, the goal of optimisation is to minimise
the cost. Both problems are equivalent, as the cost can be defined as the opposite to the
fitness: c = −q.

By convention, most mathematical optimisation procedures are designed to minimise.
A very general formulation of the optimisation problems is then

minimise f (x) subject to x ∈ C. (3.1)

Here f is the objective function and C is the feasible set.
An optimisation problem may be categorised according to the form of its objective

function f that is the function for which an optimal value is required. These functions
are identified as either linear or nonlinear.

In some cases, it is practicable to locate a local minimum, and this may not be a
global minimiser as shown in Figure 3.2.

Refer to the information provided by Geoscience Australia, most Australian deposits
tend to occur in one, or often more than two isolated deposits surrounded by small
deposits which are less predictable. Since the spatial and temporal distribution of gold
deposits is extremely heterogeneous, the problem of predicting the existence such type
of deposits requires the application of nonconvex functions. However, in this scenario,
problem may have a large number of locally optimal solutions (Figure 3.2 and Figure
3.3)

Figure 3.2. Nonconvex problem may have a large number of locally optimal solutions.

The three main challenges using optimisation models for prediction of distribution of
gold deposits can be drawn from the above:

i. Prediction of the presence or absence of mineralisation in particular areas of lease.
ii. Increase the efficiency of exploration targeting,
iii. Lower the cost of exploratory drilling.
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3.1.1 Precedents - what to expect?

The question is “what one can expect from the application of nonconvexity to solving
geological predictive problems"?

One serious limitation of the research is that there are no clear precedents on the
application of nonconvex nonsmooth optimisation methods to extracting information
from core-drilling datasets anywhere in the literature.

To sum, the expectations and potential problems that may occur are as follows:
– Real-world problems can be modeled as nonconvex optimisation problems, but

these problems become at least NP-hard.
– There is not a general algorithm to solve problems efficiently in all cases. In most

cases approximate solutions may be sought.
– The involvement of a process that generates a sequence of approximate solutions

may be required.
– NSO problems may have multiple locally optimal solutions. One gets into locally

optimal solutions because of an algorithm that specifically searches for locally
optimal solutions (see Figure 3.3).

– For nonconvex problems, the main drawback is the need for good initialisation
(program restarts). Domain-specific knowledge to design these initialisations might
be required.

– The concern is that the effect of one hidden variable cannot be expressed as a
linear combination of effects of other variables.

– The concern is that the classical statistical theory may not provide a basis for the
whole range of nonconvex optimisation methods.

– Predictions made by NSO models might occur outside the range of the data.
– Visualising high-dimensional solutions (when the number of predicted samples

exceeds the number of samples in actual data) is not an easy task. Local solutions
then, might provide an end-user with knowledge about the geometry of a nonconvex
object.

– Statistically, higher variance in the data provided by nonconvexity may be expected.

Figure 3.3. Schematic example of a nonconvex function with starting point, local
minima, saddles and the error.
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3.1.2 Potential problems with data visualisation

Visual representation of multivariate data, in fact, can provide insights into the structure
of the underlying data. The usefulness of visualisation arises from the power of the
human visual system in detecting unseen patterns. May appear, the weakest part present
in some papers on solving spatial problems is in their visualisation part, where 2-D
diagrams graphs and plots the level of interaction with the end-user is often minimal.

Here is another challenge: to help people from the industry comprehend the behaviour
of algorithms intuitively, how the outcomes of NSO algorithms be visualised? Some
believe that there are no other ways to visualise higher dimensional constraints or feasible
sets as in 2D. Conventional visualisation methods may fail to capture the “sharpness” and
“isolation" (isolated high-grade samples, other than a group of clusters) of minimisers.
In the following sections, an OpenGL-based visualisation is provided to give the reader
a clear view of the behaviour and properties of algorithms, including the positioning of
hyperplanes (see Figure 3.6) and visual presentation of algorithm performance.

3.1.3 Cluster analysis

The term cluster analysis (CA) is about discovering groups in data. CA is usually used
in situations where clustering information is not observed on the data points and one
wants to get this information from the data. It is the generic name for a variety of
procedures that can be used in ML to create classification (Everitt et al., 2011). These
procedures form clusters of highly similar entities.

Henning (2016) defines the objective of CA as to divide a set of data points into
subsets or clusters such that observations within one cluster are more similar to each
other than to observations in different clusters.

In ML research, clustering is a method of unsupervised learning. This is the assignment
of a set of observations into clusters (some prefer term subsets) so that observations in
the same cluster are similar in some sense.

3.1.4 Regression analysis

Another frequently cited technique is the regression analysis (RA), which is used for
studying the relationship between a dependent variable and a set of explanatory variables
which have observations on a sample of objects. The concept of RA is that if the samples
come from different populations, the variable indexing the populations also affect the
dependent variables. RA is viewed as a form of predictive modelling which investigates
the relationship between a dependent and independent variable, called predictor. This
technique is often used in mineral processing for exploring relationship between the
variables.

It is essential to mention that almost all known spatial techniques are based on RA
in a greater or lesser extent. There are various kinds of regression techniques available
to make predictions. For instance, linear regression is one of the most widely known
modelling methods. For R environment the lm function is the most downloaded from
CRAN. For finding the probability of event, a logistic regression is used.

In cases, when the power of independent variable is >1, a polynomial regression is
worth to consider. Other methods, such as Least Absolute Shrinkage and Selection
Operator (LASSO) making predictions by penalising the absolute size of the regression
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coefficients. In some situations, in which independent variables are highly correlated,
ridge regression can be used.

3.1.5 Clusterwise regression

This thesis is mostly focused on a specific type of regression analysis which can be referred
to as clusterwise regression (CR), which is probably the most interesting technique which
has great potential.

The CR is a method that iteratively clusters data into clusters according to the
available regression pattern and then updates the regression in each cluster simultaneously
until an equilibrium is attained.

CR is referred to estimating the class-specific hyperplanes underlying the data that
randomly come from a population consisting of distinct classes. Hyperplanes (see Remark
4) do not necessarily pass through the origin in the 3D dimension (Figure 3.6).

Cluster analysis problems are divided into two classes:
1. A cluster is considered as a subject of the data points, which can be modelled

adequately by a distribution from class of cluster reference distributions (CRD).
These distributions have been selected to learn and imitate geological heterogeneity
with respect to the data analysis problem. Therefore, CRD are often unimodal. If
the class of CRD is parametric, then one is interested in the classification of the
data points and parameter estimation within each cluster.

2. A cluster is considered as an area of high-density of the distribution of the whole
data set. No distributional assumption is made for the single clusters.

Traditional regression techniques are usually applied to homogeneous observations.
However, the underlying geology is an example where the observations are not homogeneous.
In this way, another method, known as clusterwise linear regression (CLR), which
simultaneously identify subgroups and associated regression functions is considered for
overcoming the heterogeneity problem in regression analysis.

3.2 Method: Clusterwise Linear Regression

If in the clusterwise regression the regression functions are linear then it is called
clusterwise linear regression (CLR).

There are two possible objectives when using CLR:
1. Identifying clusters of subjects that differ with respect to the set of predictors

having explanatory power for the response variable.
2. Providing good predictive capability for the response variable.

To increase chance of the solvability of problem, the objective function is a combination
of objectives 1. and 2.

To predict values at unknown areas we propose to apply the clusterwise linear regression
(CLR) method described in Bagirov et al. (2014) for designing an algorithm to tackle
the problem of predicting values between the sampled and recorded points. In this way
the requirement for stationarity (section 2.4.1) can be avoided. The algorithm is able
to predict probable locations and grades of gold using data directly from exploration
drillholes.
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Figure 3.4. Four linear functions are used to approximate the data.

The CLRmethod combines unsupervised learning (or clustering) and regression techniques
and finds simultaneously optimal partitions of data and regression coefficients within
clusters to minimise the overall fit. Given a data

A =
{

(a1, b1), . . . , (am, bm)
}

(3.2)

where ai ∈ Rn stands for an input and bi ∈ R for its output, the aim of CLR is to
divide the data into k clusters and to find regression coefficients (xj , yj) for each cluster
j = 1, . . . , k.

For regression coefficients (xj , yj) and a data point (a, b) ∈ A the regression error is
defined as follows:

Eab(xj , yj) =

 n∑
p=1

xjpap + yj − b

2

(3.3)

A data point is associated with the cluster whose regression error at this point is smallest.
This means that the regression error Eab(x, y) for the point (a, b) ∈ A is given as:

Eab(x, y) = min
j=1,...,k

Eab(xj , yj) (3.4)

Note that the regression error for a given point (a, b) ∈ A is defined as a minimum over
finite number of regression errors calculated for each cluster. Then, the overall fit of the
spatial predictive function is formulated as follows:

fk(x, y) =
∑

(a,b)∈A
Eab(x, y) (3.5)

where x = (x1, . . . , xk) ∈ Rnk and y = (y1, . . . , yk) ∈ Rk. The function fk is called the
k-th CLR function. For k > 1 it is a nonsmooth nonconvex function.

The Cluserwise Linear Regression problem is formulated as
minimise fk(x, y)
subject to x ∈ Rnk

y ∈ Rk
(3.6)

It is a nonconvex nonsmooth optimisation problem. The number of clusters k is not
known a priori and this number should be specified before solving (3.6). The number
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of variables in (3.6) is (n+ 1)k and does not depend on m, which is the number of gold
samples.

Remark 2. Be noted that in the clusterwise linear regression (see (3.4)) more than
one linear function is used to approximate the data. Therefore, the regression error
for any point (a, b) ∈ A in (3.5) should be defined as a minimum of regression errors
over all clusters. This means that one has to apply the minimum operation to define
the regression error and therefore “min" operation in the definition of the regression
error is not redundant. The total regression error is given as the function fk and
defined as a sum of all regression errors.

Since the problem (3.6) is nonconvex, it may have a large number of locally optimal
solutions. Therefore, the success of the local search algorithm strongly depends on the
choice of initial solutions (or starting poins). To find initial solutions, an algorithm
introduced in Bagirov et al. (2013) is adopted. This algorithm uses the so-called
auxiliary CLR problem. To address the nonconvexity of the problem (3.6) an incremental
algorithm (IA) described in Bagirov et al. (2013) is applied.

At each iteration the Incremental Algorithm uses the auxiliary CLR problem to find
a set of initial (starting) points. The algorithm starts with one linear function and
gradually adds one linear function at each iteration. Thus, the algorithm computes sets
of predictive solutions directly from drilling data.

The reason of selecting the CLR as the preferable prediction technique is that it
approximates the whole drill-core assay. The use of many initial points as well as the
incremental approach in the algorithm allows one to find global or nearly global solutions
to the CLR problem (3.6).

3.3 Computing predictive solutions

The function, defined in (3.5), is nonsmooth and nonconvex when k ≥ 2. The problem in
(3.6) has a special structure called piecewise partial separability. This special structure
is used to modify the discrete gradient method (DGM), introduced in Bagirov (2008),
to solve the problem (3.6).

The piecewise partial separability allows one to reduce the number of function evaluations
in the DGM. An incremental approach is used to generate starting points for the DGM.
In this approach linear functions found at the k-th iteration are used to find the starting
solution for the (k + 1)-th iteration. The following remarks apply.

Remark 3. DGM is a derivative-free method for nonsmooth optimisation, which
does not require the calculation of subgradients of the objective function. The DGM
computes only values of the objective function and approximates its subgradients
using these values. More information on the DGM can be found in Karmitsa et al.
(2012) and Bagirov et al. (2014).

Remark 4. A hyperplane is a plane, which is a flat in the two-dimensional space
that extends infinitely far.
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3.4 Solving CLR: Incremental Algorithm

Computational learning theory can be defined as the mathematical study of efficient
learning by machines. The demand for efficiency is one of the primary characteristics
distinguishing computational learning theory from other techniques of spatial inference
and pattern recognition in data.

The maintenance and processing of exploration data face the following challenges
1. The exploration drilling data is not usually large.
2. It is subject to many small changes (split parts of same core may provide different

information)
3. The data has to be kept updated with new parameters.
Then, the question can be asked on how do you avoid recomputing whole volume after

adding new samples?
The problem that affects non-incrementalised schemes is efficiency, which is a vital

factor in the quality of output. Incremental algorithms control a sequence of input and
find a sequence of solutions that build incrementally while adapting to the changes in
the input. To improve efficiency the optimisation, the process of unsupervised machine
learning is divided into many small incremental steps.

As previously discussed (section 3.1), the global optimisation problem may have a
large number of solutions among which only global or near-global solutions are of interest.

However, some conventional global techniques cannot be directly applied to solve this
problem when its size is large. From the other hand, local search algorithms can reach
only locally optimal solutions, the quality of which depends on starting points (initial
solutions) (Figure 3.3).

For efficient local search, it is crucial to develop a procedure for finding those good
starting points from the actual drilling data. Therefore it is crucial to use a procedure for
finding these starting points. This can be done, in particular, by applying incremental
approach for solving general CLR problem. The algorithm incrementally finds clusters
in data and approximate them using one linear function. A pseudo-algorithmic code of
the Incremental Algorithm is presented in Table 3.1.

3.5 Implementation of Algorithms

The incremental algorithm gradually computes regression functions starting from one
function to solve the CLR problem. Steps 1–5 in Table 3.1 avoid recomputing the
whole volume of data after every small change. When the assay is expanded with new
parameters and new gold interceptions are added, the algorithm saves time by only
recomputing existing output. At the first iteration of the incremental algorithm, the
whole data set is considered as one cluster, and one linear regression function for the
data set is found. Step 2 is for computation of the next linear regression function.
Then, it generates initial solutions (starting points). Finally, it builds a set of predictive
solutions withing (and outside) domain.

The algorithm computes the updated data significantly faster than computing new
output data from scratch.

Importantly, since the exploration drilling network grows inwards incrementally as
new data gained, the algorithm learns the number of clusters and converts new input
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Table 3.1. A pseudo-code of the Incremental Algorithm for finding initial solutions
directly from drill hole database

Step 1 (Initialisation): Select parameters. Compute the linear regression function (x1, y
1) ∈

Rn ×R of the whole set A. Set l := 1
Step 2 (Computation of the next linear regression function): set l := l + 1. Let

(x1, y1, · · · , xl−1, yl−1) be the solution to the (l− 1)-CLR problem, find a set of solutions
Ā to the l-th auxiliary CLR problem.

Step 3 (Refinement of all linear regression functions): for each (ū, v̄) ∈ Ā select
(x1, y1, · · · , xl−1, yl−1, ū, v̄) as an initial solution, compute their respective clusters, apply
the DGM and compute a set of initial solutions (x̄1, ȳ1, · · · , x̄l, ȳl).

Step 4 (Computation and recovering of hidden spatial partitions from drilling data): choose any
(x̂1, ŷ1, · · · , x̂l, ŷl) = argmin {fl(x̄1, ȳ1, · · · , x̄l, ȳl) : (x̄1, ȳ1, · · · , x̄l, ȳl)}.

Step 5 (Stopping criterion): if l = k, then stop. Otherwise go to Step 2.

partitions into non-stationary deterministic locally optimal solutions. Algorithm 3.1 was
run in Fortran 95 and compiled using g95 compiler.

Figure 3.6 shows how the Incremental Algorithm learns drilling data through randomly
generated and added one-by-one hyperplanes (Remark 4). Hyperplanes are generated
automatically and positioned by the algorithm without humans involvement. Figure 3.6
shows such hyperplanes where the actual drilling traces shown in white. Importantly,
each DGM run results in re-positioning of hyperplanes.

Figure 3.5. The Incremental Algorithm (3.1) learns drilling data through randomly
generated and added one-by-one hyperplanes (4). Actual drilling traces are shown in

white.

3.5.1 Prediction Algorithm

In order to make a prediction the following method is used: let ` > 1 be a user-defined
integer parameter. For any new observation (with only input data) one finds l number
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Figure 3.6. Figure shows trilling traces and 10 randomly generated hyperplanes. When
the data is expanded with new information and new assayed interceptions are added, the
algorithm saves time by only recomputing those outputs, which depend on the changed

data.

of closest points from the training set using only input attributes. Then these points are
used to determine the weights of each linear function and the prediction is made using
these weights. That said, the process of prediction is one that is entirely AI controlled,
subject to available drilling data.

3.6 Validation: finding the number of hyperplanes

The number of hyperplanes (linear functions) approximating the data is not known a
priori. In order to determine the number of hyperplanes, the validation step is used. This
means that the training set is further divided into two subsets: the training set containing
80% of all data used for training and 20% of the training set used for validation.

Using the new training set the IA is applied to compute hyperplanes approximating
the training data and a different number of hyperplanes are used for this purpose. For
each number of hyperplanes, a model is formulated to predict data from the validation
set.

The flowchart of the Incremental Algorithm with the validation step is given in Figure
3.7, where the Root Mean Square Error (RMSE) is used as the measure of performance.
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Start Input drilling data
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find hyperplanes
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Figure 3.7. The logical structure of the adapted to solving spatial variability
problems UML system where the regression mean-squared error (RMSE) is the
measure of performance. Schematic representation of the matrix-free prediction
procedure is broken down into subroutines according to the phases of the

computation
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Chapter 4

Method 1: Clusterwise Linear Regression

Results presented in this chapter have been published in the following paper: I. Grigoryev,
A. Bagirov and M. Tuck "Prediction of gold-bearing localised occurrences from limited
exploration data", International Journal of Computational Science and Engineering
(IJCSE), Inderscience.

Detailed comparisons of predictions with realistic distribution of gold are rarely met
in publicly available documents. The reason is that any references to or inaccurate
statements on gold content during exploration may lead to a rapid “speculative” rise
or fall in the trading price of stocks. The literature provides little evidence to suggest
that the practised conventional methods used in the evaluation and direct targeting can
guarantee that the predictions made reflect reality. Hence, there is no one “correct”
prediction.

Machine learning, programming, pattern analysis and automatic detection systems
are increasingly used to solve engineering, industrial, mathematical, analytical, medical
and financial problems. Modern ML techniques emulate the human learning experience,
becoming intuitive as data is sequentially processed.

Some ML techniques have the capacity to function better than human consciousness
and provide an end-user with more realistic scenarios. Some extra review of research
into solving nonconvex problems (e.g. Yerlikaya-Özkurt et al., 2016, Akteke-Öztürk
et al., 2017; Çelic et al., 2017; Patel et al., 2018; Kara et al., 2019) indicates that
numerous opportunities exist for development of new optimisation techniques, often from
other fields, that may significantly benefit the efficiency of the grassroots/ brownfields
exploration and improve the knowledge of the underlying mineral content.

This chapter is focused on the evaluation of the predictive performance of the CLR
on an inclined deposit called "Snd". The designed UML system 3.7 is applied to solving
locally optimal instances derived from the available drilling data. Since the author is
under a consent agreement that is approved by the operator, for reasons of confidentiality
the project and its location is not disclosed.

4.1 Convergent and Divergent Problem Solving

Guilford et al. (1956) and Campbell & Fiske (1959) state that there are two different
concepts of problem solving – convergent and divergent.

Convergent means everything is coming into one area with only one solution and one
outcome. There is one convergent way to solve the problem correctly.

Consider the following example of using the convergent concept for solving a problem:
if one processes the same spatial data x, y, z with the same type of IDW or kriging (say
simple or point kriging) using the same software – 100 consequent program runs will
result in 100 of the same graphical outcome.
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One of the main advantages of this concept is that the convergent methods are usually
based on extensive research, often previous case studies, practical experience and tests.
There are many statistical tools that can be used for data description, as part of data
description and analysis of the results.

Divergent means there are many solutions to a problem and there are many ways to
achieve the resulted outcome. For example, 100 UML (3.7) consequent restarts of the
loop (runs) will result in 100 different graphical and numerical outcomes. Importantly,
for the divergent methods a step-by-step guide to be considered or used as the basis does
not necessarily exist.

Heale & Forbes (2013) state that converging results aim to increase the validity
through verification and divergent findings (contradictory) can lead to new and better
explanations for the phenomenon under investigation.

As a method, CLR is very well researched, described and its performance is tested
against other regression techniques. But there is one nuance: in relation to the prediction
of the distribution, clear precedents (section 3.1.1) on the application of the CLR to
predicting gold (as well as other minerals) have not been found. In other words, the way
that prediction with CLR has been done in the past shows that no correct method has
been established.

The applied in this thesis CLR is purely divergent method, which is opposed to IDW
or kriging. The methods are conceptually different and hardly comparable. Therefore,
standard statistical tools that can be used for the description, comparison, analysis and
visualisation of nonconvex output may not work.

4.2 Multiple solutions? What’s next?

Since the prediction is reformulated into a nonsmooth nonconvex problem, the outcome
may have a large number of locally optimal solutions. Another problem that needs to
be considered is visualisation – the manner of the representation of these solutions, in
which two inherent contradictions exist:

1. Combined with actual measurements the outcome should be explicitly viewed
as the input for further point-cloud processing. However, without assumptions
(section 2.4.1), the representation of locally optimal solutions through visual imagery
in conventional style (Figure 2.2) is hardly possible.

2. The accurate reconstruction of the geometry of 3-D objects and the determination
of their volumetric parameters from a limited number of solutions is problematic.
The amount of data obtained from several program runs will not provide the
minimal density required to form a 3-D solid.

The method for resolving these contradictions is increasing the number of solutions
to a million. This resolves the paradox and provides cloud density from 1 pts/m3

(low-resolution 369.3K vertices) to ≥5 pts/m3 (high-resolution 3M vertices). Multiple
UML runs will allow:

1. Creation of a raw cloud of points (for data viewing).
2. Accurate convergence into a point-cloud processing software (e.g. HighRES).
3. Further export into a CAD system such as SolidEDGE and SpaceClaim.
More specifically, this type of visualisation allows draping of a surface (similar to

laying a piece of cloth over an object) over a point cloud in 4K resolution. Then, the
surface is deformed to take the shape of the object along the drape direction.
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To obtain volumetric parameters of an object, a raw cloud of points needs to be
converted into CAD, which builds a mesh/ wireframe or meshless model. Finally, the
location, orientation and volumes of an object become accurately calculated.

Correct data representation requires complex (and expensive) commercial point-cloud
processing packages. Another aspect is that the development of such software requires
significant engineering efforts to design, program, test and fix bugs. This research has
not been funded and these packages were not accessible. As a consequence, the author
cannot demonstrate the capabilities of Method 1 in its full potential.

As a solution, to represent the prediction and explain what is this? where is that?
what is going on in?, a number of techniques from OpenGL to conventional statistics are
employed to render and analyse the output. It is hoped that some of the tests conducted
through this chapter have the capacity to describe, compare and categorise the output.

4.3 Organisation of Chapter

It was revealed (section 3.1.1) that there were no clear precedents on extracting locally
optimal instances from exploration data as well as the 3-D representation of these
instances anywhere in the literature.

An optimisator needs a visualisation tool so that the results can be viewed and clearly
understood. The author is precisely aware of that it an extremely challenging task to
describe locally optimal solutions visually, spatially and statistically to help the reader
comprehend the internal structure of nonconvex objects and to provide all the answers
in one place.

The author is aware of that an attempt to create a solid with a relatively small
amount of predicted data may yield erroneous results or lead to dead-end. An attempt
to reflect isolated high-grade samples, other than a cluster (or group of clusters) with
traditional CAD-base systems may lead to biases in modelling. The main features of the
applied method are outlined in the following sections through graphical and R-statistical
explanation.

The key steps are outlined as follows:
1. Present and describe the actual data, identify high-priority regions (4.4, 4.4.1)
2. Of high importance is the answer "what are the effective software of integration the

output into real-world exploration endeavours?" Select an accessible and location-based
type of 3-D visualisation to represent the generated data coherently (4.5).

3. Prepare data for conversion into DGM solver, run program (4.6, 4.7, Appendix A).
4. Render the results through the selected type of visualisation (4.8):

a. Visualise segments in 3-D (4.8.2).
b. Visualise sub-segments in 3-D (4.8.4).

5. Present results by comparison, composition, distribution and relationship:
a. Statistical features of actual and predicted data (4.8.6, 4.8.5).
b. Compare test sets (4.9).
c. Compare prototypes obtained from a one test set, but generated with a

different number of hyperplanes.
6. Explore the effect from incrementally increasing number of hyperplanes (4.10).
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7. Explore the similarity between the actual data and prediction. Explain the effect
of model mimicry (if present) (4.12).

8. Draw conclusions (4.14).
In case if the effect from adding extra hyperplanes to the initially set number is

insignificant, is is essential to discuss a cloud of points as the right approach to the
representation of output.

4.4 Experimental Data Presentation: Geological Settings

The presented real-world exploration assay contains information on more than one
element as a source of potential revenue. This applies to ferrous and non-ferrous metals
such as Cu, Ba, Co, Mg, Mn, Pb, a number of critical technical elements and gold Au.

The data was obtained from the surface by "fan" diamond drilling practice (Figure 4.1),
which in many cases produced multiple, but small clusters of gold close to the drilling
trajectories. Thirty-eight drillholes have been drilled. To save the cost of drilling,
controlled deviation of the borehole path from a parent hole was applied. The hole
size has been of 96mm and the bit size used was 95.6mm. The recovered cylindrical
cores have been HQ size =63.5mm from 0.3 to 1.7 metres long. Four drillholes were
abandoned due to risk of flooding. Therefore, they have been excluded from the process
of computation.

The assay renders very complex geometry, associated with structural deformations
and forms extremely discontinuous shapes that are difficult to model and display in high
resolution. No accurate engineering assumptions regarding the mineral resources were
made at the time of drilling program due to the complexity of the drilling geometry and
the lack of reliable data between too widely spaced drillholes and in many parts of the
domain.

The existence of gold within the area, provided an opportunity for a study of the
performance of the UML (Figure 3.7) on a part (70m×180m ×530m depth) of the
exploration lease.

Please be noted that lithology, stratigraphy, alterations and lithochemistry have not
been involved in computation because these require the application of more complex
algorithms and AI techniques.

4.4.1 Testing the actual data with Discrete Fourier Transform

It is unclear whether the deposit contains sufficient gold to justify further development.
The data is not enough to evaluate the exploration potential and make an investment
decision. However, based on the available information, the distribution profiles ”depth
from–depth to” can be reproduced with Discrete Fourier Transformation method (DFT),
where the power density estimation is made by mean-square amplitude.

Although the objective of the DFT is not to locate high-grade targets, it can suggest
the most promising horizontal sections of a domain. In this section, the reduction of a
3-D problem to a 2-D problem via a Fourier transform is used as a method for presenting
the variation with vertical boundaries, in which the recorded gold grades are decomposed
into spectrum frequencies over a continuous range.

The results of DFT shown in Figures 4.4–4.8 illustrate the correlation between Welch
mean-square amplitude (WMA) and the frequency of changes per one metre of depth.
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Figure 4.1. A side view of actual data with irregularly gridded fan drilling
pattern in low resolution.

The frequency of changes is ranging from the surface to mRL500 (the deepest level) and
indicates significant redistribution of grades with depth change.

The shapes of the curves shown in Figures 4.4–4.8 suggest that gold may occur as
relatively dense dissemination throughout the host lithology from mRL200 to mRL400.
The DFT indicates that insignificant concentrations from 0.0 to 2.0 Au g/t may occur
between mRL0.00 and mRL200 (Figure 4.4) and between mRL400–mRL500 (Figure 4.7).

The effect of "white noise" in Figures 4.5–4.6 is equal intensity at different frequencies,
providing it a constant spectral density. “White noise” is an indirect indication of the
presence of potentially significant concentrations.

Pragmatically, the shapes of the curves in Figure 4.5 and Figure 4.6, indicate that
the highest concentration, ranging from 2.00 to 355.3 Au g/t may lie between mRL240
and mRL340 (Figure 4.8). However, this concentration does not demonstrate feather
increase with depth. It also suggests good potential for horizontal extent of Au outside
lease.

The DFT suggests that approximately 50% of gold is confined to one stratigraphic
interval from mRL250 to mRL350, which is being the middle portion of the domain.
This interval is the target stratigraphic area, represented by relatively abrasive and
unconsolidated formations. A rig operator may expect slower penetration rates than the
upper and underlying levels.

Despite information is still incomplete and imprecise, it lets the exploration crew know
the depth, at which targets may be located and the number rods required to intercept
the targeted intervals. From an investor’s point of view, the shape of high spectral
density on Figure 4.8 suggests that the mineralisation has the potential for extension
beyond the exploration area, and the fees and charges for the adjacent lease might be
50% higher.
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Figure 4.2. Method of visualisation 1 showing trace of drillhole DH002,
depth markers, cores and the recorded grades in Au g/t. (see Method 1,
Sec 2.1.1, p.12). In CAD, the intercept is expanded in Cartesian distortion

view, allowing to dip in and out to see more details as needed.

From an investor’s perspective, this project
1. Little evidence is available that this project has advanced enough to a stage when

mineral resource estimates are determined.
2. The project has not advanced to a stage when mineral processing and metallurgical

testing are appropriate.

Figure 4.4. DFT mRL100–200 in the form of variation versus frequency per
1/m of depth. Minor, but equal intensities with low spectral density suggest

the presence of insignificant, erratically distributed Au occurrences.
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Figure 4.3. Method of visualisation 2 showing traces DH002 and DH003,
depth, cores and grades in Au g/t. Gold grades along the drillhole displayed
in cylinder style with variable width. Cores are in the range 0.6–1.0m in
length. This method allows one to zoom into the details in low resolution

Figure 4.5. A rapid increase of Au concentrations between mRL200–300.

Figure 4.6. Spectrum indicates the presence of highly localised gold
occurrences between mRL300–400. White noise works as an “indicator” that
mirror the variation in distribution and the probable presence of gold in the
form of dust and fines. Noise reduction at the right side denotes a lover

variation.
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Figure 4.7. DFT mRL400-500. The Au concentrations rapidly decrease
from depth ≈350 metres. A relatively Frequency per 1 metre relaxation
curve suggests that the very fast decaying components are associated with

smaller Au grades.

Figure 4.8. Noisy spectrum of stratigraphic layer mRL242–341 indicates
high Au variation and the presence of high grades which can be associated

with the epicentre of the mineralisation.

4.5 Methods of Visualisation: Actual Exploration Data

Using the data, coordinates and grades in Au g/t were assigned to 4667 Au recorded
samples. The input variables used have been: x, y, z coordinates, the position of drilling
collars on surface, the recorded length from/ to (metres), the true depth (metres),
]azimuth◦ of the trajectories and ]dip◦. Please note that the drillholes in Figure 4.1
are inclined at oblique angles to intersect the veins and to maximise the information
from the drill cores.

A large number of CAD/GIS software packages have been widely adopted by the
industry owing to their effectiveness in abstracting out the information and understanding
drilling information clearly. Generally, all these applications offer the same concept:
viewing the data at different scales to see the big picture as well as to zoom local areas
of interest.

It is also should be noted that accurately capture of the subsurface exploration logs
and the deviation of each drillhole as one static high-resolution image is hard to visualise.
The multidimensional data (as solids) is also very hard to visualise in a non-interactive
way and depict the whole domain as a one static image. For example, the visualisation
of the drilling grid shown on Figure 4.1 is not well suited for an accurate rendering of
the geometry of traces, multiple segments and grades on a one static image (this relates
to Figures/images in this thesis). Low-resolution of multiple solids also pose limitations
on the accuracy of presenting the exploration pattern.

Basically, most modern packages offer two methods of drilling data visualisation
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1. Method 1: the intercepts is shown in the form of grade patterns along drilling
traces (Figure 4.2). This method is used for reporting (see section 2.1.1).

2. Method 2: a section of drillhole DH–002 assay grades shown in Figure 4.3 in the
solid trace style, coloured and sized according to grade. This method is built-in
option in many GIS applications.

Figure 4.3 has been created by method 2. It renders a fragment of a drillhole N-002
located between 85 and 120 metres below the surface. Grades of gold are shown in ppm
(1 part per million = 1 gram of gold / 1 ton of rock). The gold intersections are displayed
in cylinder style with variable width. The adjacent drillhole DH-003 shown no grades
because it was abandoned (risk of flooding).

Method 2 is more flexible in terms of depicting drilling data using drillhole traces,
grades and intervals. This type of visualisation is far from ideal: changing the visual
style to show elements behind other elements in the view is required. However, this
representation style is more preferable to produce visually appealing results and will
be used to visualise pseudo-arrays (prototypes) that encompass the generated solutions.
For example, Figure 4.3 renders a fragment of a drillhole N-002 located between 85 and
120 metres. Grades of gold are shown in ppm (1 part per million = 1 gram of gold/1
ton of rock mass).

Note that since nonconvex prototyping forms the backbone of successful visualisation,
it will be focused on the application of modules that are written in Python. To do this,
the visualisation (as large programming task) is broken into small, but more manageable
packages available from open-source Python libraries. Prototyping by methods 1 and 2
(Figures 4.2 and 4.3) is problematic.

4.6 Predicted Data Preparation for Conversion into DGM

4567 valid samples were used for computation. The lowest gold value in data =0.01 Au
ppm (0.01 Au g/t). Almost all zero values were removed by the operator to maintain
continuity. The highest registered value is 355.3 Au ppm.

To facilitate the proposed UML system (Figure 3.7), the actual n-dimensional data has
to be transformed into an appropriate for processing format. To do this, the following
parameters were extracted from the drilling data: x, y = Cartesian coordinates, z =
drilling collar elevation (metres), the true depth (m) of each drillhole, dip◦ and azimuth◦
of each straight segment of a drillhole, gold grade of each extracted core in g/ton.

Note: the reality is that drilling trajectories are not straight, many sections have a
shape of “dog’s leg". If a drill bit rotates normally on a central axis, the direction of
advance does not change. However, a drill hole can be unpredictable in the path that it
takes. The unintentional departure of the drill bit from a planned borehole trajectory
usually occurs due to change in rock density, the type of bit used, the weight on the
bit, type of rods, mechanical stabilisers and the set-up of the rig. The recorded assay
parameters indicate that all drillholes were not straight.

The data was extracted from the available (actual) .accdb file and converted into
three .txt formats.

– inputdata1.txt: positioning of “collars” in Cartesian system, x, y and z–drilling
rig set up/ collar elevation (m).

– inputdata2.txt: “survey” data with information on depth (m) of each core, true
depth of each drillhole (m), azimuth◦ and dips◦ of each cores along drillholes.
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– inputdata3.txt: “assay” data: the depth from/to of each side of core (m) and gold
grades in ppm.

Next, the .txt files were exported into a general-purpose cross-platform Code::Blocks.
For compilation into fortran 95 format (Appendix A) a loop transformation was used.

Once compiled, the data is processed with the derivative-free discrete gradient solver
(DGM) for solving nonconvex nonsmooth minimisation problems using the training set.
The source code of the DGM for computing locally optimal solutions and sub-gradients
can be found in Appendix B. Numerical experiments have been conducted on Intel Core
i7-6700 CPU 4CHz and 16GB of RAM.

Two stopping criteria strategies were used:
1. The number of function evaluations is restricted to 106.
2. The program is stopped if it cannot decrease the value of the objective function in

1000 successive iterations.

4.7 Program Runs

Four program runs (DGM, Appendix B) with the involvement of a different number
of hyperplanes produced four sets of locally optimal predictive solutions withing (and
outside) the exploration domain:

- (Test Set 1) 1730 samples → Prototype 5 (5 hyperplanes) 1730 samples.
- (Test Set 2) 1066 samples → Prototype 7 (7 hyperplanes) 1066 samples.
- (Test Set 2) 1066 samples → Prototype 10 (10 hyperplanes) 1066 samples.
- (Test Set 1) 1730 samples → Prototype 10A (10 hyperplanes) 1739 samples.
For three-dimensional modelling of the predicted data, it was necessary to determine

Cartesian coordinates x, y, z of each predicted sub-segment (virtual core) in three-dimensional
space. The output format in .txt is as follows

– The elevation of drilling collars (m).
– The maximum depth of the lowest segment (m).
– Azimuth◦ (inclination) of each segment.
– Depth “from” (m), the depth of the upper side of each sub-segment along trace.
– Depth “to” (m), the lower depth of each sub-segment.
– Cartesian coordinates x, y, z of the upper and lower end of each sub-segment along

trace.
– The length (m) of each sub-segment (virtual core).
– Grade of gold in Au g/t along each sub-segment.

4.8 Visualisation of 3-D Nonconvex Data

The standard built-in tools of commercial CAD-based applications used in the evaluation,
make the visualisation of nonconvex data difficult to comprehend.

The data that an optimiser intuitively feels, required first to understand what the
underlying comprehension issues might be. In relation to this study, the complexity of
NSO visualisation depends on the level of representation of predicted spatial attributes
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and their inter-relationships to 3-D visualisation comprehension skills of an end-user.
Therefore, it is essential to discuss some aspects of 3-D visualisation comprehension.

The major concern was the inability of an engineer to associate a nonconvex nature of
the predicted structures with their interior. In the author’s view, the spatial attributes
put into 3-D nonconvex context require a better understanding of the inter-connecting
relationships. To incorporate static images into the optimisation context, it was required
to select an effective strategy of representation of locally optimal solutions in 3-D.

To gain insight into the data, a number of renders with mathematical content were
synthesised to demonstrate complex optimisation problems within visualised contexts.
Nonconvex sets are called prototypes, or P. The number after capital letter (i.e. P5)
denotes the number of hyperplanes involved into the computation.

It had been intended to display the actual data and prediction within in a one static
image (in this thesis). To do this, the effect of “disproportionality” was applied to all
3-D realisations. More specifically, the radius of each <tracepath> segment has been
programmatically increased by ×10 times without the application of artificial extrusion.

To view nonconvex segments and sub-segments, the procedure of visualisation was
done in three steps:

1. Obtain the shapes, orientation and locations of locally optimal groups of segments
within the domain.

2. Iteration of nonconvex segments with theoretical target.
3. Explore sub-segment structure. To do this, a subdivisor modifying function is

applied to avoid multiple distortions.
Figure 4.9 renders step 1 – the positioning and orientation of four sets (prototypes)

of locally optimal solutions. The prototypes P5, P7, P10 and 10A were generated from
four runs and initialised at different starting points. Unfortunately, the appearance of
the model in Figure 4.9 is not to be somewhat complete satisfactory, because the goal
to depict all four prototypes in one single render in high resolution was not achieved.

4.8.1 3-D output

The problem of solving locally optimal instances was clearly framed for the machine as
to

1. recognise, learn and mimic the behaviour of the actual data
2. predict the existence of gold occurrences in the unexplored areas.
It was expected that each predicted structure would imitate structural composition

of the actual data and produce sub-data such as latitude, longitude, length of predicted
cores (m), from/to (m), ]dip◦, ]azimuths◦ and maximal true depth (m).

Contrary to expectations, the UML took a different approach to the situation and
optimised data in an entirely different way. The UML has interpreted the tasks of
recognition, learning and search on its own, without human involvement and consequently,
selected different approach to solving problem. More specifically, instead of strictly
following the instructions set by the source code (Appendix B) to solve the problem, the
UML generated its own sub-algorithm, i.e. it essentially re-programmed itself.

Instead of imitating the geometry and path of the actual drilling trajectories, locally
optimal solutions were synthesised in spread-out across domain multiple unequal structures,
whose long axis radiated from the actual drilling collars located on the surface.
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Figure 4.9. Side view of the actual drilling and predicted data looking east,
with a vertical angular offset, shows positioning and orientation of 4× locally

optimal sets: P5 (blue), P7 (yellow), p10 (cyan) and P10A (red).

4.8.2 Visualisation of segments

There is a graphical limitation that affects rendering time - a large number of objects
(>24fps). To avoid system lags, a conflict between the multiple packages and decrease
rendering time, each segment shown on Figures 4.10–4.13 was digitised as a solid. Each
segment consists a number of sub-segments (virtual cores), which will be shown and
discussed in section 4.8.4.

An advantage of the applied style was that it made available practically unlimited
perspectives from which to view the generated segments. The model on Figure 4.9 may
be rotated, panned and zoomed in countless ways, it also accommodates some important
details in one image.

The generated group of segments are located away from the actual drillholes and point
at zones with the presence (and absence) of gold. The trajectories in Figures 4.10 and
Figure 4.11 tend to radiate from a single point on the surface (see collars in Figure 4.10)
winding down in a continuous and gradually widening curve to form helix-like shapes.
The angular deviation has been observed as from 0.0061 to 0.0366 rad.

4.8.3 Iteration of segments with theoretical target

Figure 4.12 is a 3-D side view of a theoretical target digitised as a textured solid and
virtually intercepted by the actual traces and nonconvex segments. Figure displays
colour-coded groups of the segments, which are the parts of 4×prototypes obtained
from 4× program restarts. Theoretical targets shown in Figures 4.12–4.13 are complex
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Figure 4.10. A view from below showing three groups of segments obtained
from 3× program (DGM loop) re-runs. Each segment is 0.6–16.0 metres in
length and contains information on Cartesian x, y, z coordinates and grades.
Actual drilling traces and attributed grades shown in white. To make small

details visible, segments and grades are captured by zooming.

geological structures located ≈290 metres below the surface. The assay suggests the
presence of a number of voids within domain, which can pose a serious problem to ore
extraction, due to the possibility of a collapse of caving. That means, some parts of the
deposit cannot be mined due to high cost of support. Both actual and nonconvex sets
show some signs of potentially economic mineralisation within the deposit. However, the
data obtained from several program runs is not complete enough to be converted into a
CAD solid.

4.8.4 Visualisation of sub-segments

To visualise nonconvex sub-segments shown on Figures 4.15–4.16, a subdivision function
was applied. The images render sub-segments as associated gold content in a segment.
The attributed grades are set as from 0.5 to 20.0 Au g/ton. One can see that each
segment is represented by both high, ultra-low and 0.0 grades.

Sub-segments imitate the behaviour of the actual cores in terms of length (metres)
and composition (grade). The synthesised grades point towards the locations where the
gold occurrence may or may not exist. The sub-segments are designated by UML as
predicted gold samples. One may notice Figure 4.16 a multiple empty “gaps", or zero
grades in between the sub-segments.

Knowing Cartesian coordinate x, y, z of each predicted sub-segment, a model such
as shown in Figure 4.14 can be created (as shown on Fig 4.3) with a standard CAD
tool. Figure 4.14 shows the structural composition of the longest part of P10A, which is
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Figure 4.11. A view from above illustrating the positioning, orientation and
geometry of the predicted groups of segments. Actual drilling traces and

attributed grades are shown in white.

311.5m in length. The part consists of 18 segments split into a number of sub-segments
ranging between 0.6–1.0 metre in length. UML points at the likelihood of the presence of
barren rock along the path and probable high-grade localised occurrence (308.24 Au g/t
shown in red). Gold grades in the colour-coded sub-segments are shown in the solid-trace
style sized according to Au grade.

4.8.5 Statistical features of the actual and predicted data

The project is relatively small grassroots/brownfield endeavour. Deep drill holes were
developed on nominal 70m×180m×530 partings. The available data is not complete
enough to make an investment decision. Therefore, there is a risk that benefits will
not exceed the associated cost of drilling and delineating the deposit. Basic statistics
presented in Table 4.1 summarises main statistical features of the actual and predicted
data. It has to be noted that all 0.0 Aug/t values have been deleted from the actual
data by the operator. The lower limit of detection was set by the operator as 0.01 Au
g/t.

Table 4.2 presents the outliers (extreme values). However, all the recorded in the
assay high values, including the extreme once, are considered to have high importance
for making predictions by optimisation. Therefore, these high values have not been
removed during data preparation for conversion into the DGM solver.
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Figure 4.12. A side view showing theoretical exploration target, predicted
segments, groups of segments and actual traces. Each segment shown in a
cylinder style. Solid obtained from IDW (actual and predicted data combined

in a one set): textural fractals =1.6

Table 4.1. Statistical representation of the actual and predicted data.
Parameter Actual set P5 P7 P10 P10a
N total 4667.00 1730.00 1066.00 1066.00 1739.00
Mean 1.045 1.604 1.005 1.057 1.524
Standard Deviation 8.982 10.579 10.225 10.238 10.118
SE of mean 0.131 0.254 0.313 0.314 0.243
Lower 95% CI of Mean 0.787 1.105 0.390 0.442 1.048
Upper 95% CI of Mean 1.303 2.103 1.619 1.673 2.000
Variance 80.678 111.908 104.555 104.807 102.370
Sum 4877.020 2775.355 1070.812 1127.120 2649.920
Skewness 27.200 21.537 27.243 27.127 22.629
Kurtosis 875.266 552.878 796.648 792.084 612.317
Uncorrected Sum Squares 381539.195 197940.798 112427.014 112810.888 181957.117
Corrected Sum Squares 376442.704 193488.431 111351.367 111619.144 177919.121
Coefficient Variation 8.595 6.594 10.179 9.682 6.640
Mean abs Deviation 1.444 2.196 1.411 1.454 2.138
SD times 2 17.964 21.157 20.450 20.475 20.236
SD times 3 26.946 31.736 30.676 30.713 30.353
Mode 0.020 0.375 0.000 0.000 0.230
1st Quartile (Q1) 0.040 0.357 0.187 0.105 0.180
Median 0.120 0.433 0.236 0.137 0.230
3rd Quartile (Q3) 0.530 0.503 0.287 0.163 0.280
Maximum 355.300 308.976 309.720 309.702 308.240
Index of Max 4667.000 946.000 282.000 282.000 955.000
Interquar Range (Q3 - Q1) 0.490 0.147 0.100 0.059 0.100
Range (Max - Min) 355.290 308.989 309.720 309.702 308.240
Median Absolute Deviation 0.100 0.074 0.050 0.033 0.050
Robust Coeff of Variation 1.236 0.253 0.314 0.351 0.322
P90 1.560 0.591 1.177 1.286 2.330
P95 2.600 5.646 2.647 3.032 3.800
P99 12.800 29.283 9.939 11.465 23.240
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Figure 4.13. A top view showing nonconvex segments (colour-coded),
groups of segments, actual drilling traces and grades, textural fractals =1.8

4.8.6 Actual Drill Core Data

A number of extreme and ultra-low values were identified as statistical outliers (Table
4.2). The data in Table 4.1 shows that grades in the actual set range from 0.01 to 355.3
Au g/t, and the extreme high grades are presented by a few samples (Table 4.2; Figure
4.23).

The bean plot in Figure 4.25 shows the existence of a number of high grades ranging
from 0.01 to 355.3 Au g/t. (Berkman, 2001), (Selley, Cocks, & Plimer, 2005) suggest if
the mineralisation is hosted by quartz-sulphide veining, the middle and high grades can
be discovered much further from its location than previously thought.

The histogram in Figure 4.17 shows that most bins are concentrated between 0.01
and 1.7 Au g/t. Table 4.1 and Figure 4.17 indicate the prevalence of low grades (<0.50
Au g/t Au) and the presence of significant grades (between 0.50 and 1.7 Au g/t).

Box plot shown in Figure 4.24 is scaled to range 0.0–32.0 Au g/t. The distribution,
the range of Standard Deviation and mean =1.045 clearly indicate that low-grade gold
is dominant a occurrence, which is not necessarily localised. Data suggests that gold is
highly disseminated and may exist in the form of dust, grains and small fines everywhere
within the explored domain.

In practice, gold grades less than 0.5 Au g/t are usually not considered “material” as
exploration drill targets due to their low grade. However, the intersections >0.5 Au g/t
(see Figures 4.24 and 4.17) with up to 1 metre of internal barren rock are considered as
significant and therefore, reported. From an engineering perspective, the presence of the
potentially worthwhile interceptions is encouraging. Significant assays >5.0 Au g/t are
usually reported separately as contained within the broader lower grade intervals.
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Figure 4.14. Figure shows the composition of the longest fragment of
prototype 10A. Total length = 311.5m, 18 segments split into a number of
sub-segments ranging between 0.3m–1.0m in length, visualised by method
1 (Sec 2.1.1). UML points at the likelihood of the presence of barren
rock along the path and probable high-grade localised occurrences between

RL340 and RL380.

However, due to a limited number of high grades >50 Au g/t in the actual assay,
possible extensions, directions and the plunge of mineralisation are remain unclear.
Consequently, the exploration target area may not be reliably identified at this stage.
The amount of available drilling and predicted data is not enough and can yield probable
erroneous gold distribution. More drilling is required. This project needs to be advanced
to a stage when mineral reserve estimates are determined. The data is not complete
enough to form the basis for ASX release.

It has to be noted that this project can be sold, bought, joint ventured at any time as
is (change owner), without reporting. However, in this scenario, a new owner will have
to invest in extra exploration. Once more reliable samples >2.0 Au g/t obtained, and
when sufficient knowledge on the thickness of probable intersections are improved, an
estimate of the averaged thickness of mineralisation can be assumed.

JORC 2012, s. 17 recommends that for grassroots projects, results must be represented
only as approximations. To do this, for example, weighted average technique (Hazen,
1967, p.162), which is an average where each value has a specific weight or frequency
assigned to it, can be used to determine the grade of the anomalous intervals when these
intervals less than 1.0 metre have been sampled.

The capture of stable grades >8 Au g/t along 5 metres core may significantly increase
sell price of this project in the open market. Obviously, more drilling is required to
evaluate the exploration potential, and the exploration crew is motivated to identify
higher grade zones (footprints), minimising the amount of drilling. In this case, a point
cloud created by Method 1 helps the crew in achieving these goals.

4.9 Comparing test sets TS1 and TS2

The goal of this section is to visualise two test sets so that they are distinguishable
and can be graphically compared. To overcome some graphical limitations, to allow
nonlinear data manipulation to convert the fitted regression model into graphics, two
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Figure 4.15. An oblique view showing nonconvex sub-segments
(colour-coded), segments, groups of segments. Grade attributes range from
0.5 to 20.0 Au g/ton and shown in the solid-trace style sized according to

grade. Solid obtained from IDW, textural fractals applied =1.8

extra packages tdyr and dplyr were applied. Computations in Listings 4.7–4.12 approximate
the errors that make the relationship between TS1 and TS1 values relationships.

The representation of TS1 and TS2 features summarised in Table 4.3 is essential to
proceed.

Bean plot in Figure 4.18 compares two distributions side-by-side. Table 4.3 highlights
the highest values in TS1: 83.2; 45,7; 27.2; 22.6 and 18.9 Au g/t. The highest values
in TS2 are 27.2; 22.6 and 13.5 Au g/t. The similarity is that both TS contain 0.0
values. The histograms in Figure 4.19 and Figure 4.20 indicate that ultra-low grade
beans dominate the others.

Not much evidence available to suggest that TS1 and TS2 are similar.
The equivalence test (equal variances not assumed) in Listings 4.1 suggests that means

in TS1 and TS2 are not equivalent. However, the result of t-test indicate that at 0.05
level, the difference between TS1 and TS2 is not significantly within [0.0;0,1].

Side-by-side TS1 and TS shown in Figures 4.21–4.22 are polar Kernel density plots,
in which the densities of mean distributions are presented as spatial patterns. The
compared patterns clearly indicate that the compared sets are distinct in terms of the
shape and positioning of KDE patterns of mean density distribution. The shapes and
positioning of the patterns give ground to suggest that TS1 and TS2 are different. Please
be noted the application of KDE will be discussed in section 4.10.2.
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Figure 4.16. An oblique view showing iteration of sub-segments with
theoretical target. Grade attributes range from 0.5 to 20.0 Au g/t. Higher
grades refine the shape of target. Each program restart generates only one

prototype, i.e. a group of segments (yellow, red, etc.)

Figure 4.18. Side-by-side comparison of bean plots for TS1 vs TS2, scale
0.0–90.0 Au g/t
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Table 4.2. Identified extreme values in the actual set, P5, P7, P10 and P10A. Note:
0.0 values were removed from the actual assay by the operator to keep continuity.

Index Value
Actual set Highest 2367 355.300
Actual set Highest 3263 289.000
Actual set Highest 965 210.500
Actual set Highest 1664 176.800
Actual set Highest 2063 148.900
Actual set Lowest 4957 0.01000
Prototype 5 Highest 946 308.975
Prototype 5 Highest 519 232.022
Prototype 5 Highest 663 121.418
Prototype 5 Highest 1446 65.4085
Prototype 5 Highest 934 43.2139
Prototype 5 Lowest 1433 0.00000
Prototype 5 Lowest 769 0.01920
Prototype 5 Lowest 772 0.04570
Prototype 5 Lowest 773 0.05460
Prototype 7 Highest 282 309.719
Prototype 7 Highest 782 115.909
Prototype 7 Highest 608 14.6854
Prototype 7 Highest 251 14.6854
Prototype 7 Highest 92 13.5109
Prototype 7 Lowest 314 0.00000
Prototype 10 Highest 282 309.702
Prototype 10 Highest 782 115.914
Prototype 10 Highest 608 13.9418
Prototype 10 Highest 251 13.9418
Prototype 10 Highest 92 13.4627
Prototype 10 Lowest 377 0.00000
Prototype 10A Highest 955 308.240
Prototype 10A Highest 528 218.590
Prototype 10A Highest 1455 86.4600
Prototype 10A Highest 672 72.1900
Prototype 10A Highest 1274 42.0600
Prototype 10A Lowest 1050 0.00000

Figure 4.19. Histogram of TS1, scale 0.0–5.0 Au g/t
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Figure 4.17. Histogram showing the distribution of grades in the actual
assay, n =4667, scale 0.01–1.80 Au g/t

Table 4.3. Comparison of statistical properties and outliers for TS1 and TS2
TS1 TS2 Index Value

N total 1730 1066 TS1 Highest 129 83.20
Mean 0.659 0.572 TS1 Highest 352 45.70
Standard Deviation 2.782 1.545 TS1 Highest 1625 27.20
SE of mean 0.067 0.047 TS1 Highest 1070 22.60
Lower 95% CI of Mean 0.528 0.479 TS1 Highest 590 18.90
Upper 95% CI of Mean 0.791 0.665 TS1 Lowest 376 0.00
Variance 7.742 2.387 TS1 Lowest 1209 0.00
Sum 1140.610 609.800 TS1 Lowest 876 0.00
Skewness 19.187 9.473 TS1 Lowest 382 0.00
Kurtosis 497.495 130.691 TS1 Lowest 18 0.00
Coefficient of Variation 4.220 2.701 Index Value
Mean absolute Deviation 0.851 0.720 TS2 Highest 961 27.20
SD times 2 5.565 3.090 TS2 Highest 406 22.60
SD times 3 8.347 4.635 TS2 Highest 774 13.50
Sum of Weights 1730.000 1066.000 TS2 Highest 285 11.50
Minimum 0.000 0.000 TS2 Highest 942 9.29
1st Quartile (Q1) 0.020 0.020 TS2 Lowest 691 0.00
Median 0.090 0.090 TS2 Lowest 690 0.00
3rd Quartile (Q3) 0.540 0.540 TS2 Lowest 689 0.00
Maximum 83.200 27.200 TS2 Lowest 688 0.00
Interquart. Range (Q3 - Q1) 0.520 0.520 TS2 Lowest 692 0.00
Range (Max - Min) 83.200 27.200
P90 1.530 1.630
P95 2.210 2.170
P99 7.420 6.700

Figure 4.20. Histogram of TS2, scale 0.0–5.0 Au g/t
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Figure 4.21. KDE of Test Set 1, n =1730. Negative sectors shown in white.

Figure 4.22. KDE of Test Set 2, n = 1066. Near-zero density sectors are
labelled as 0.0

4.10 Comparison of Nonconvex Prototypes

In the present and following sections, the results of optimisation are explored from an
optimisation viewpoint rather than statistical. In fact, the generated locally optimal
solutions, which have not occurred naturally, should be considered as artificial objects
that mimic the behaviour of the actual assay.
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Listing 4.1. Equivalence test TS1 vs TS2
14 # Show s t a t i s t i c s
15 N Mean SD SEM
16 "TS1" 1729 0.61157 1.94981 0.04689
17 "TS2" 1066 0.57205 1.54513 0.04732
18 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
19 # Compute e q u i v a l e n c e a n a l y s i s
20 # Output
21 D i f f e r e n c e SE Low Lim Upp Lim Low Bound CI Upp Bound CI Conf Lev
22 0.08727 0.08194 0 .00 0 .10 −0.04756 0 .2221 0 .95
23 At 0 .05 l e v e l , mean o f "TS1" i s not e q u i v a l e n t w i th mean o f "TS2
24 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
25 #Compute t−t e s t s t a t i s t i c s , 0 < d i f f e r e n c e < 0 .1
26 N u l l H y p o t h e s i s DF t s t a t i s t i c Prob
27 D i f f e r e n c e <= 0 2767 1.06495 0 .1435
28 D i f f e r e n c e >= 0.1 2767 −0.15538 0.43827
29 Equal v a r i a n c e s not assumed
30 A l t e r n a t i v e h y p o t h e s i s : 0 <D i f f e r e n c e < 0 . 1 .
31 At 0 .05 l e v e l , the d i f f e r e n c e i s not s i g n i f i c a n t l y w i t h i n ( 0 . 0 ,1)

In the UML, running the same algorithms several times yields different results per
initialisation. The problem (3.6) is nonsmooth and nonconvex, therefore it also has a
large number of locally optimal solutions, which are obtained by performing local search
with one initialisation. That means after ten program restarts one can obtain different
locally optimal solutions each time. In other words, one can not see the same result ten
times.

Each DGM restart generates values for new samples, i.e. creates a new unique set
of locally optimal solutions, which can not be repeated or pragmatically reproduced.
Therefore, the consistency of statistical results across parameters after multiple program
initialisations is not guaranteed.

However, in some cases the range, variance, standard deviation and other parameters
of the generated structures may look similar statistically, but they always dissimilar
enough in their shapes and geometries– millions distinct spatial combinations are possible.
The only repeated feature is that each initialisation generates a set solutions of ≈33%
of the actual dataset in size.

May appear, there is no general approach to describing local solutions by classical
statistics. Formulating prediction in terms of convex optimisation is easier to solve,
easier to analyse and easier to describe statistically. For example, despite the fact that
in many cases global optimisation problems can be solved exactly, they still hard to be
described by the classical statistical tools. It appears, the classical statistical theory
does not stay behind some nonconvex nonsmooth optimisation methods.

R. Tibshirani (Tibshirani, 1996; James et al. 1996; Tibshirani et al., 2010) admitted
that from a statistical viewpoint, nonconvexity does typically mean higher variance.
A comparison of the variances provided in Table 4.1 as 80.678 for the actual set and
111.908, 104.555, 104,807 and 102.370 for P5, P7, P10 and 10A indicates that statement
made by Tibshirani is not incorrect.

One come across a situation where the output models built from one testing set may
have similar features, characteristics, shapes, etc. Sets P5 and P10A were build from Test
Set 1, whereas P7 and P10 from Test Set 2. Hypothetically, pairs P5–P10A and P7–P10
may illustrate similar characteristics and behaviour. The visualised of prototypes shown
in Figures 4.11–4.16 shows that the shape of each synthesised multi-object structure is
much more complex and variable than in the actual dataset.

Considering that the generated prototypes are hard to describe statistically, so that
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for pragmatic reasons, a number of naïve statistical approaches are used in this and the
following sections to explore outputs. For example, statistical representation summarised
in Table 4.1 provides some information about the mean, SD, variance and the character
of the distributions.

The side-by-side boxplots shown in Figure 4.23 and Figure 4.24 display variation in
samples and graphically compare the actual and predicted sets through their quartiles.
From an optimisation viewpoint, apart from near-similar segments inside the rectangle
in Figure 4.24 showing means and the positioning of the distribution line, the boxplots
indicate that pairs P5–P10A and P7–P10 may be similar. But the feature that makes
these pairs similar is unknown and has to be investigated. Therefore the following
sections will look answers to questions

1. How can the obtained locally optimal solutions be described and compared?
2. How to detect the amount of difference and similarities between the models built

from a one test set?
3. The objects built from one test set, but with a different number of hyperplanes

(e.g. P7 and 10A) may (or may not) have similar features, characteristics and
geometries. What is the effect of incrementally adding extra hyperplanes?

Figure 4.23. Figure showing five boxplots side-by-side for comparison.
Scale 0.0–360.0 Au g/t

Figure 4.24. Side-by-side boxplots summarise the distribution of data
stratified in five groups. The categorical factors: mean value curves–shown
in red, the distribution lines–shown in blue, SD range min–max marked as

red crosses, scale 0.0–32.00 Au g/t.
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The application of proper statistical tools may answer the asked questions and result
in detecting the difference as well as similarities between the nonconvex sets.

Figure 4.25. Comparison of multiple bean plots for nonconvex sets. Pair
P5–P10A and pair P7–P10 appear as near-similar. Scale 0.0–360.0 Au g/t

4.10.1 P5 versus P10A (built from Test Set 1)

The structure of P5 was originally formed by (3.1) 5 hyperplanes. Set P10A has been a
modification of P5, to which 5 extra hyperplanes were added incrementally (one-by-one).
In this section, the comparison of results is graphically analysed ( "before and after") to
see if there has been an effect, i.e. an improvement in the objective function value.

The comparison of the distributions in the bean and multiple box plots (Figure 4.25
and Figure 4.23) indicates that prototypes P5 and P10A are semantically similar and
display near-similar means: 1.604 vs. 1.524 (see Table 4.1). The highest predicted values
(Table 4.2) have been recorded as 308.975 ppm (Au g/t) for P5 and 308.240 ppm for
P10A. Results from AIC and f-tests in Listings 4.4 suggests that P5 and P10A are not
statistically different. However, we still not yet have enough evidence to suggest that
the compared sets are similar.

The CI in Figure 4.37 is not completely within the equivalence limits. One can not
claim that the mean of the P5 is equivalent to mean of P10A.

Figure 4.26. Histogram showing the distribution of grades in Prototype 5,
n =1730, scale 0.00–1.8 Au g/t
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Figure 4.27. Histogram showing the distribution of grades in Prototype
10A, n =1739, scale 0.0–1.8 Au g/t

4.10.2 What is the effect from increasing the number of hyperplanes?

Which statistical feature makes the datasets similar? What could be the reason of the
similarity between the sets obtained from a one test set?

The side-by-side boxplots on Figure 4.24 suggest that the answer may lie in the
distribution of densities of means.

Then, an interesting possibility would be to visualise and explore the effect of adding
extra hyperplanes to the existing ones, taking into account the distribution of densities
of the means.

To do this and to visualise the difference between P5 and P10A, polar Kernel density
estimator (KDE) (Figure 4.28 and Figure 4.29) was applied.

There are three known ways by which KDE can be generated and visualised: x, y
Cartesian, Polar and Ternary. In our case, polar KDE is a useful tool for comparing
spatial patterns of mean density distribution in each set.

Like the histogram, the KDE encodes the density of observations on one axis with
height along the other axis. The output is a map showing the distribution of the
concentrations of means in each set in the form of spatial patterns (geometrical comparison)
and matrices (mathematical comparison, Appendix D). Unfortunately, the KDE theory
has not made it into commonly available statistical software.

This approach allows comparison of visual effects that occurs when new hyperplanes
are added to the excising number of hyperplanes. More information on the KDE,
weightings and scaling can be found in studies by Uria-Tellaetxe & Carslaw (2014) and
Grange et al. (2016).

For graphical analysis and model comparison a type of KDE, termed as polar estimator
is used. The peculiarity of the KDE is that the mean concentrations are plotted as
patterns. Bright contours around the main clustered area on the KDE shows where
to highest densities are located. This type of visualisation may substantially improve
understanding of the similarity/ dissimilarity between the compared sets. The matrix
of the distribution of densities on the means is presented in Appendix D.

For convenience, zero value patterns and labels have been removed from both radial
and angular scaling. Please note that the method does not allow the data to be weighted
exactly. The principal aim of involving the Kernel density estimator is as a graphical
analysis and comparison of the distribution of density patterns in data rather than for
quantitative purpose.
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Figure 4.28. P5, n =1730, 5 hyperplanes. KDE shows the distribution of spatial
patterns of the probable concentrations of the densities of means.The upper limit
for data is set to 310. Red shading is statistically significant gradients indicate
higher density values. Radial scale = +/- 2162. The greatest densities located

between 0.0 and 1.5. Spatial patterns are semantically similar to P10A.

Figure 4.29. P10A, n = 1739. KDE shows the effect from adding 5 extra
hyperplanes to existing 5 (cf. P5 and P10A). Radial scale = +/- 2173. The
greatest densities located between 0.0 and 1.5. Spatial patterns (geometrical

comparison) are semantically similar to P5.
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The Kernel density plot of P5 shown in Figure 4.28 highlights the highest isolated
concentrations of low grades between 0.0 and 1.8 ppm, which occur in one direction,
particularly from the centre to the easterly direction 0◦, reaching ≈ 1600. This single,
continuous and dominant pattern in the eastern direction has high probability. The
plot shows areas of positive, low and higher grade concentrations to the north–west.
Comparing Figure 4.28 and Figure 4.29 one can notice that the shapes of patterns,
in overall, changed insignificantly. There are some minor changes in the densities of
patterns. Each sample of observed data is smeared out into a density function that
represents other samples that might have also happened.

On Figures 4.28 and 4.29 some interesting phenomena can be seen - the distribution
of densities in the compared plots has changed significantly. Why does this happen?

The boxes shown in Figure 4.24 indicate that there are some changes in the SD
range and the shapes of distributions for P5 and P10A. Bins of P5 in Figure 4.26 are
concentrated mostly between grades 0.25 and 0.7 Au g/t. Adding 5 extra hyperplanes
resulted in the re-distribution of bins towards higher grades as shown in Figure 4.27.
For example, compared to Figure 4.28. one may observe (Figure 4.29) some reduction
of bins in range 0.25–0.4 and the appearance of new bins between 1.0–1.7 Au g/t.

Despite P5 and P10A describe the same matter and built from one test set (TS1), they
are not equivalent. Histograms in Figures 4.26 and 4.27 provide a quick visualisation of
the difference in distributions. Data in the both histograms are right-skewed and have
more than one small localised concentrations.

One can see that bin width in both P5 and P10A are too small, show too many
individual grades. However, the bins generally allow the underlying frequency distribution
of the data to be seen. The equivalence test presented in Listings 4.3 indicates the
presence of the difference between means. The t-test (Listings 4.3) statistics suggests
that at 0.05 level the difference is not significant within (0, 0.1). Figure 4.37 shows 95%
Confidence Intervals and the the difference range between the means. If the computation
repeated, these parameters would not significantly change.

However, sets P5 and P10A do not demonstrate similarity in terms of bin size,
positioning and the distribution over the full range of values.

Incrementally adding 1,2...5 and more hyperplanes to existing 5 gives a new dataset
with re-generated of SD, variance, etc. This an attempt to re-shape the distribution and
spatial positioning of the instances. However, there is little evidence available that this
type of data manipulation significantly improves the accuracy of prediction.

Benefit from increasing the number of hyperplanes is the possibility to obtain a
significantly lower RMSE, i.e. to obtain more refined model. In our case, 5 hyperplanes
are enough to form a basis for creating millions of spatial combinations, which will be
near-similar in terms of the distributions of the means.

Figure 4.30 and Listings 4.2 compare P5 and P10A, generated using the same testing
set TS1. The plot shows a random pattern, 1001 rows and there is a correlation between
the results. Figure 4.31 compares full range of data, the distances are zoomed from the
regression line. 1740 rows involved in comparison with sd=1.8.
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Listing 4.2. Comparison of P5 and P10A
52 # compute model from 1001 rows , r educe over−p l o t t i n g
53 s e t . s eed (1001)
54 d a t a s e t <− data . f rame ( x=rnorm (1001) , y=rnorm (1001) ,
55 z=rnorm (1001) )
56 d a t a s e t $p5 <− with ( da ta s e t ,
57 rnorm (1001 , mean=x+2∗y+z , sd =0.7) )
58 m <− lm ( p5~x+y+z , d a t a s e t )
59 p l o t ( p r e d i c t (m) , d a t a s e t $p5 ,
60 x l a b=" p5 " , y l a b=" p10a " , pch = 1 , f o n t . l a b =1, f o n t . sub =1, cex . l a b =1)
61 minor . t i c k ( nx=10, ny=5)
62 a x i s ( s i d e = 1 , at = c (−9 ,−7 ,−5 ,−3 ,−1 ,0 ,1 ,3 ,5 ,7 ,9) )
63 a x i s ( s i d e = 2 , at = c (−7 ,−5 ,−2 ,0 ,2 ,7) )
64 a b l i n e ( a=0,b=1)

Figure 4.30. Versus Fit comparing P5 (blue) with p10A (red). Sets
produced from TS1, options set.seed(1001) and sd=0.7 are applied.

Figure 4.31. Sets P5 (blue) with p10A (red) with options set.seed(1740). The
distances are zoomed on from the regression line with sd=1.8.
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Listing 4.3. Equivalence t-test P5 : P10A (built from TS1)
12 # Compute e q u i v a l e n c e f o r two samples P5 : P10A
13 > t t e s t = t . t e s t ( p5~p10a )
14 > names ( t t e s t )
15 [ 1 ] s e t r u l e " D i f f e r e n c e = mean1 − mean2"
16 [ 2 ] " A l t h y p o t h e s i s : l owe r l i m i t < D i f f e r e n c e < Upper l i m i t "
17 # Compute s t a t i s t i c s
18 # Output
19 N Mean SD SEM
20 " p5 " 1730 1.60425 10.57864 0.25434
21 " pa10 " 1739 1.52382 10.11781 0.24263
22 # Compute e q u i v a l e n c e
23 # Output
24 D i f f e r SE Low Lim Upp Lim Low CI Upper CI
25 0.08043 0 .3515 0 .00 0 .10 −0.49789 0.65876 0 .95
26 Equal v a r i a n c e s not assumed
27 At 0 .05 l e v e l mean p5 i n not e q u i v a l e n t w i th mean p10A
28 # Compute t−t e s t s t a t i s t i c s
29 # Output
30 N u l l H y p o t h e s i s DF t_ s t a t i s t i c Prob
31 D i f f e r e n c e <= 0 3458 0.22883 0.40951
32 D i f f e r e n c e >= 0.1 3458 −0.05567 0 .4778
33 Equal v a r i a n c e s not assumed
34 A l t h y p o t h e s i s 0 < D i f f e r e n c e < 0 .1
35 At 0 .05 l e v e l the D i f f e r e n c e i s not s i g n i f i c a n t l y w i t h i n (0 , 0 . 1 )

Listing 4.4. Comparison P5 and P10A (both from TS1) with Akaike and f-test
41 # Create f i t pa ramete r s f o r P5 and P10A
42 # Output
43 p5 pa10
44 S lope Value 47.09509 44.15915
45 S lope Std_E r r o r 7 .79104 7.38808
46 I n t e r c e p t Value 0 0
47 I n t e r c e p t Std_E r r o r 0 0
48 # Create f i t s t a t i s t i c s , Aka ike and f−t e s t
49 # Output
50 p5 pa10
51 Number o f P o i n t s 1730 1739
52 Degrees o f Freedom 1729 1738
53 R e s i d u a l Sum_of_Sqr 193844.2479 178292.2304
54 Pearson ’ s r 0 0
55 Adj . R−Square −0.00184 −0.0021
56 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
57 # Compute Aka ike t e s t , where Aka ike we ight i s v a l u e
58 # d i v i d e d by the sum o f t h e s e v a l u e s a c r o s s two models .
59 # Output
60 AIC Akaike Weight
61 Same 16223.01766 0.72364
62 D i f f e r e n t 16224.94281 0.27636
63 Accord ing to Aka ike we ights , d a t a s e t s a r e same
64 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
65 # Compute f_ t e s t
66 F Numer .DF Denom .DF Prob > F
67 0.07481 1 3467 0.78448
68 Data s e t s a r e not s t a t i s t i c a l l y d i f f e r e n t
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Listing 4.5. Equivalence test P7 : P10 (built from TS2)
71 # Compute e q u i v a l e n c e f o r two samples P5 : P10A
72 > t t e s t = t . t e s t ( p7~p10 )
73 > names ( t t e s t )
74 [ 1 ] " D i f f e r e n c e = mean1 − mean2"
75 [ 2 ] " A l t h y p o t h e s i s : l owe r l i m i t < D i f f e r e n c e < Upper l i m i t "
76 # Compute s t a t i s t i c s
77 # Output
78 N Mean SD SEM
79 " p7 " 1066 1.00451 10.22523 0.31318
80 " p10 " 1066 1.05734 10.23751 0.31356
81 # Compute e q u i v a l e n c e
82 # Output
83 D i f f e r SE Low Lim Upp Lim Low CI Upper CI
84 −0.05282 0.44317 0 0 .1 −0.78209 0.67645 0 .95
85 Equal v a r i a n c e s not assumed
86 At 0 .05 l e v e l mean p7 i n not e q u i v a l e n t w i th mean p10
87 # Compute t−t e s t s t a t i s t i c s
88 # Output
89 N u l l H y p o t h e s i s DF t_ s t a t i s t i c Prob
90 D i f f e r e n c e <= 0 3458 −0.11919 0.54743
91 D i f f e r e n c e >= 0.1 3458 −0.34484 0.36513
92 Equal v a r i a n c e s not assumed
93 A l t h y p o t h e s i s 0 < D i f f e r e n c e < 0 .1
94 At 0 .05 l e v e l the D i f f e r e n c e i s not s i g n i f i c a n t l y w i t h i n ( 0 , 0 . 1 )

4.10.3 P7 versus P10 (from Test Set 2)

Next, sets P7 and P10 are compared. The structure of P7 was originally created by 7
hyperplanes, which were appointed by CLR automatically, as the most optimal variant.
P10 is a modification, to which three more hyperplanes were added one-by-one. The
distribution in P7 is described in Tables 4.1–4.2, Figures 4.32– 4.35 and Listings 4.5–4.6.
Data in th histogram (Figure 4.32) shows that the major concentration occurs around
value 0.25.

Figure 4.32. Histogram showing the distribution of grades in Prototype 7,
n =1066, scale 0.0–1.8 Au g/t

The KDE density patterns in Figure 4.35 and Figure 4.36 are near similar. The
highest isolated concentrations of low grades lie between 0.0 and 1.8 Au g/t scale, which
occur from the centre to the easterly direction 0◦, reaching ≈900. This continuous and
dominant pattern in the eastern direction has the highest probability. The KDE also
shows areas of low concentrations to the north–west. There some minor differences to
northerly direction 90◦–150◦ between 600 and 900. The matrix of the distribution of
densities on the means is presented in Appendix D.
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Figure 4.33. Histogram showing the distribution of grades in Prototype 10,
n =1066, scale 0.0–1.8 Au g/t

The equivalence test in Listings 4.5 indicates the existence of a difference between
means. However, t-test statistics suggest that at 0.05 level the difference is not significant
within (0, 0.1). Figure 4.38 shows the difference range between the means of P7 and
P10. It is not entirely correct to say that there is a 95% chance that the calculated
confidence interval contains the true mean. Pragmatically, the CI in Figure 4.38 is not
within the equivalence limits. One can not claim that the mean of the P5 is equivalent
to the mean of P10A.

From KDE in Figure 4.36 along, there is no obvious indication that adding 3× extra
hyperplanes significantly changed the existing mean density patterns. By contrast, the
histogram in Figure 4.33 clearly indicates the re-distribution of bins towards higher
grades ranging from 1.0–1.5 Au g/t.

Figure 4.34 compares full range of data, the distances are zoomed from the regression
line. 1080 rows involved into comparison with option sd=1.8.

Figure 4.34. Sets P7 (blue) with p10 (red) with options set.seed(1080). The
distances are zoomed on from the regression line with sd=1.8.
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Figure 4.35. P7, n =1066, 7 hyperplanes. KDE shows the distribution of
spatial patterns of the probable concentrations of the densities of means.
Radial scale = +/- 1335. The greatest densities located between 0.0 and
1.2. Spatial patterns (geometrical comparison) are semantically similar to

P10.

Figure 4.36. P10,n =1066. KDE shows the effect of adding extra 3
hyperplanes to existing 7 (cf. P7 and P10A). Radial scale = +/- 1332.
Spatial patterns (geometrical comparison) are semantically similar to P7.are

semantically similar to P7.



Chapter 4. Method 1: Clusterwise Linear Regression 85

Listing 4.6. Comparison P7 and P10 with Akaike and f-tests (from TS2)
96 # Create f i t pa ramete r s f o r P7 and P10
97 # Output
98 p7 p10
99 S lope Value 41.55894 44.10214

100 S lope Std E r r o r 15 .96999 15.99101
101 I n t e r c e p t Value 0 0
102 I n t e r c e p t Std E r r o r 0 0
103 # Compute f i t s t a t i s t i c s
104 # Output
105 p7 p10
106 Number o f P o i n t s 1066 1066
107 Degrees o f Freedom 1065 1065
108 R e s i d u a l Sum o f Sqr 111716.63861 112010.91006
109 Pearson ’ s r 0 0
110 Adj . R−Square −0.00328 −0.00351
111 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
112 # Compute Aka ike t e s t
113 AIC Aka ike Weight
114 Same 9924.99433 0.72981
115 D i f f e r e n t 9926.98165 0.27019
116 Accord ing to Aka ike we ights , d a t a s e t s a r e same
117 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
118 # Compute f−t e s t
119 F Numer .DF Denom .DF Prob>F
120 0.01266 1 2130 0.91041
121 Data s e t s a r e not s t a t i s t i c a l l y d i f f e r e n t

Figure 4.37. CI for P5 : P10A Figure 4.38. CI for P7 : P10
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Figure 4.39. Plot compares 4× nonconvex sets combined with actual data
in a one single set. High values marked in blue (actual) and red (predicted).

The goal of traditional interpolation is to create a surface that is intended to best
represent empirical reality. In NSO, the data are not continuous over space. The absence
of assumptions and limited number of predicted data do not allow the obtained sets to
built a surface or solid.

4.11 Nonconvex Prototypes versus Test Sets

In this section, essentially the same procedure was applied to each nonconvex set to
explore interesting properties of the generated models, such as how well these models
have been trained and the amount of difference between the testing data and locally
optimal solutions.

4.11.1 P5 versus TS1

Figures 4.43 and 4.44 show how values in P5 and Test Set 1 are related. In Figure
4.43 three horizontal areas with adjusted by geom.point(abs) absolute size of residuals
appear

1. the upper area > 50 Au g/t is represented by four high-grade samples as high as
308, 232, 121 and 65 Au g/t marked in red.

2. the middle section is represented by a number of samples ranging 5.0–50.0 Au g/t.
3. the low area shows that the most frequent samples in P5 and TS1 occur in range

0.0–5.0 Au g/t.
As seen from Figure 4.43, the samples in the lover area have dominant sequence and

the shapes of the distributions roughly form horizontal bands around the zero line. The
data in Table 4.1 and Table 4.3 indicate the variance for P5 = 111.9 and for TS1 = 7.74.
Table 4.3 highlights the highest values in TS1 as 83.2; 45,7; 27.2; 22.6 and 18.9 Au g/t.
Therefore, the lower and middle ranges are interesting to compare for the periodicity of
the samples and shapes of the distribution.

The used amount of difference between P5 and TS1 are residuals (Listings 4.7).
ggplot2 shifts the two distributions along the x-axis, preserving the shapes and relative
distances in P5 and TS1. As seen from data in Figure 4.44, the models P5 and TS1 are
not significantly different: P5 is following the shape of the distribution of TS1.
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Listing 4.7. R–comparison P5 and TS1
126 # Compare P5 and TS 1
127 # Compute r e s i d u a l s f o r P5
128 # Output
129 Min 1Q Median 3Q Max ∗∗∗
130 −1.632 −1.261 −1.178 −1.098 307.360 ∗∗∗
131 # Compute c o e f f i c i e n t s f o r P5
132 # Output
133 Est imate Std . E r r t−v a l u e Pr ( >| t | )
134 ( I n t e r c e p t ) 1 .62338 0.26145 6 .209 6 .66 e−10 ∗∗∗
135 d a t a s e t TS1 −0.02900 0.09146 −0.317 0.75101 ∗∗∗
136 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
137 R e s i d u a l s t a n d a r d e r r o r : 10 .58 on 1728 d e g r e e s o f f reedom
138 M u l t i p l e R−squa red : 5 .822 e−05, Adj . R−squa red : −0.0005205
139 F− s t a t i s t i c : 0 .1006 on 1 and 1728 DF, p−v a l u e : 0 .7511

According to the data in Table 4.1, the highest values in P5 (308.87; 232.02; 121,4,
etc.,) are similar to the values in the actual set (cf. Table 4.1 and Table 4.2). The
question then arise why the high values are similar?. There is a valid and sufficient
reason that explains such effect: the task of the UML system has been to recognise and
mimic the behaviour of the distribution recorded in the actual assay via training and
test sets.

The Incremental Algorithm (3.1) recreates all available approximations and finally,
P5 (and other sets) becomes a replica of the actual drill-core assay. The blue points in
P5 (Figure 4.44) follow the contour of TS1 showing the effect of "model mimicry", i.e.
the ability of a model to account for the data synthesised by another data (TS1). The
plot shows how much the prediction deviated from the TS1 values and how the predicted
values are close to the TS1 values.

4.11.1.1 Comparison P5 versus TS1 with function mfrow=c(2,2)

Multiple plots shown in Figure 4.40 present a method to interpret residual terms, and
determine whether there might be problems with the model.

The Residuals versus Leverage plots identifies the influential data points in the model.
As is seen from plot, the influential values (52, 27, 59) located outside the red dashed
Cook’s distance line in the lower part. Statistics suggests that removing them would
likely noticeably alter the regression results.

The Scale-Location plot shows whether the residuals are spread equally along the
predictor range, i.e. homoscedastic. From a statistical point of view, the line on this
plot has be horizontal with randomly spread points. The red line in the plot starts
off near-horizontal at the beginning of the range, insignificantly slopes down, and then
flattens again from 0 to 6. The line goes down because the residuals for P5 values are
more close. Sector 0–6 data generally has uniform variance.

The normal Q-Q plot determines if the variables is normally distributed by plotting
quantiles from TS1 against a P5 distribution. As is seen, the data is normally distributed
and plotted in a generally straight line.

Lastly, the Residuals versus Fitted plot tests the assumptions of whether the relationship
between the variables is linear, and weather there is equal variance along the regression
line. Ideally, this plot should be relatively shapeless without clear patterns in the data,
with no obvious outliers, and be generally symmetrically distributed around the zero
line without particularly large residuals. The plot is relatively shapeless. However, there
may be a number of potential outliers.
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Listing 4.8. R–statistical comparison P5 versus TS1
24 # Compute two d i s t r i b u t i o n s
25 s e t . s eed (1001)
26 d a t a s e t <− data . f rame ( x=rnorm (300) , y=rnorm (300) ,
27 z=rnorm (300) )
28 d a t a s e t $p5 <− with ( da ta s e t ,
29 rnorm (300 , mean=x+2∗y+z , sd =0.3) )
30 m <− lm ( p5~x+y+z , d a t a s e t )
31 p l o t ( p r e d i c t (m) , d a t a s e t $p5 ,
32 x l a b=" P r e d i c t e d " , y l a b="TS1" )
33 a b l i n e ( a=0,b=1)
34 theme_bw ( )
35 par ( mfrow = c (2 , 2) )
36 p l o t (m)

Figure 4.40. Comparison of P5 and TS1 with option mfrow=c(2,2)

4.11.2 P7 versus TS2

Figure 4.45 compares the distributions in TS2 and P7 in a range from 0.0 to 340.0 Au
g/t, where the highest residuals marked as red circles. In the structure with adjusted
absolute residuals (geom.point(abs)), four areas appear:

1. An upper area >100 Au g/t is presented by just two high-grade isolated samples:
309.7 and 115.9 Au g/t.
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Listing 4.9. R–comparison P7 and TS2
143 # Compare P7 and TS2
144 # Compute r e s i d u a l f o r P7
145 # Output
146 Min 1Q Median 3Q Max ∗∗∗
147 −1.084 −0.815 −0.768 −0.716 308.719 ∗∗∗
148 # Compute c o e f f i c i e n t s f o r P7
149 # Output
150 Est imate Std . E r r t−v a l u e Pr ( >| t | )
151 ( I n t e r c e p t ) 0 .99707 0.33413 2 .9841 0.00291 ∗∗∗
152 d a t a s e t t s 2 0 .01301 0.20288 0 .0644 0.94887 ∗∗∗
153 S i g n i f i c a n t codes : 0 ∗∗∗ 0 .001 ∗∗ 0 .01 ∗ 0 .05 . 0 . 1 1
154 R e s i d u a l s t d e r r o r : 10 .23 on 1064 d e g r e e s o f f reedom
155 M u l t i p l e R−squa red : 3 .867 e−06, Ad jus ted R−squa red : −0.000936
156 F− s t a t i s t i c : 0 .004115 on 1 and 1064 DF, p−v a l u e : 0 .9489

2. The upper limit of a middle section 5.0–15 Au g/t is represented by three highest
samples: 14.6; 14.6 and 13.5 Au g/t,

3. A lower structure ranges from 0.0 to 5.0 Au g/t.
Figure 4.45 shows that the lower structure, in particular, the range 0.0–2.0, has the

dominant sequence and limited periodicity of the samples (Figure 4.46). Graphical
comparison of the parametrics in Listings 4.9 indicates that P7 attempts to follow the
contour of TS2. One can see that the distributions are semantically similar, describe
similar matter and represent similar concept.

However, a comparison of histograms in Figure 4.32 and Figure 4.20 indicates that
the distributions may be different because bins and the number of values fell into each
interval are completely different.

4.11.2.1 Statistical comparison P7 and TS2 with mfrow=c(2,2)

Statistical comparison of P7 and TS2 is presented by (Listings 4.10) is shown on Figure
4.41.

The Residuals vs. Leverage plots identified several influential values located outside
(312, 327) the red dashed Cook’s distance line. The Scale-Location plot shows are spread
near-equally along the predictor range. The red line is flat and horizontal. This model
can be viewed as homoscedastic. The data is sector (-5)–(+5) generally has uniform
variance.

The Q-Q plot determines if the variables are normally distributed by plotting quantiles
from P7 against a distribution TS2. As is seen, the data is normally distributed and
plotted in a straight line.

The residuals vs. fitted plot on Figure 4.41 tests the assumptions of whether the
relationship between the variables is linear and the whether there is equal variance
along the regression line.

It can be seen that the plot has a shape with clear patterns in the data, with the
presence of outliers. However, the model shows symmetrically distributed values around
the zero line. Large residuals (66, 118 and 778) are present. The plot has shape and
suggests that there may be a number of potential outliers.
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Listing 4.10. Comparison for P7 and TS2 with mflow
48 # Compare s e t s , app l y mflow
49 s e t . s eed (999)
50 d a t a s e t <− data . f rame ( x=rnorm (999) , y=rnorm (999) ,
51 z=rnorm (999) )
52 d a t a s e t $p7 <− with ( da ta s e t ,
53 rnorm (999 , mean=x+2∗y+z , sd =0.5) )
54 m <− lm ( p7~x+y+z , d a t a s e t )
55 p l o t ( p r e d i c t (m) , d a t a s e t $p7 ,
56 x l a b=" P r e d i c t e d " , y l a b="TS2" , pch = 1)
57 a b l i n e ( a=0,b=1)
58 theme_bw ( )
59 par ( mfrow = c (2 , 2) )
60 p l o t (m)

Figure 4.41. Comparison of P7 and TS2 with function mfrow=c(2,2)

4.11.3 P10 versus TS2

Figure 4.47 and Figure 4.48 show how values in P10 and TS2 are related. In Figure 4.48
three distinguishable areas appear

1. An upper area >100.0 is presented by just two high-grade isolated samples: 309.702
and 115.914 Au g/t.

2. A middle section 10.0–15.0 Au g/t is represented by three highest samples: a
cluster of samples 13.4–13.9 Au g/t.
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Listing 4.11. R–comparison parameters for P10 and TS2
160 # Compare P10 and TS2
161 # Compare r e s i d u a l s f o r P10
162 # Output
163 Min 1Q Median 3Q Max
164 −1.059 −0.954 −0.921 −0.892 308.644
165 # Compute c o e f f i c i e n t s f o r P10
166 # Output
167 Est imate Std . E r r t v a l u e Pr ( >| t | )
168 ( I n t e r c e p t ) 1 .059074 0.334532 3 .166 0.00159 ∗∗∗
169 d a t a s e t t s 2 −0.003038 0.203123 −0.015 0 .98807 ∗∗∗
170 S i g n i f i c a n t codes : 0 ∗∗∗ 0 .001 ∗∗ 0 .01 ∗ 0 .05 . 0 . 1 1
171 #
172 R e s i d u a l s t a n d a r d e r r o r : 10 .24 on 1064 d e g r e e s o f f reedom
173 M u l t i p l e r−squa red : 2 .103 e−07, Ad jus t ed R−squa red : −0.0009396
174 F− s t a t i s t i c : 0 .0002238 on 1 and 1064 DF, p−v a l u e : 0 .9881

Listing 4.12. R–comparison parameters for P10A and TS1
183 # Compare P10A and TS1
184 # Compute r e s i d u a l s f o r P10A :
185 Min 1Q Median 3Q Max
186 −1.542 −1.353 −1.310 −1.250 306.698
187 # Compute c o e f f i c i e n t s f o r P10A :
188 Est imate Std . E r r t−v a l u e Pr ( >| t | )
189 ( I n t e r c e p t ) 1 .54210 0.25070 6 .1511 9 .54 e−10 ∗∗∗
190 d a t a s e t $ t s 1 −0.01619 0.08770 −0.1854 0.854201
191 #
192 S i g n i f i c a n t codes : 0 ∗∗∗ 0 .001 ∗∗ 0 .01 ∗ 0 .05 . 0 . 1 1
193 R e s i d u a l s t a n d a r d e r r o r : 10 .15 on 1728 d e g r e e s o f f reedom
194 M u l t i p l e R−squa red : 1 .973 e−05, Ad jus ted R−squa red : −0.000559
195 F− s t a t i s t i c : 0 .0341 on 1 and 1728 DF, p−v a l u e : 0 .8535

3. A lower area, which shows that the most frequent samples in the sets tend to occur
in range 0.0–5.0 Au g/t. The distributions in P10 and TS2 lie on one line and the
amount by which P10 differs from TS2 is not significant.

P10 and P7 built from one test set - TS2. In terms of the presence of similar statistical
extreme values (cf. Table 4.2), P10 is near similar to P7. A side-by-side comparison of
P7 and P10 (c.f. Figures 4.46–4.48 indicates that the models are graphically comparable,
they are of the same type, generated on the basis of the same representation concepts,
describe similar matters and show relatedness to the TS2 and the actual data.

As appear, the parameters in Listings 4.9 and Listings 4.11 are not significantly
different. It can be seen from Listings 4.11 that P10 SE=0.203 ≈ P7 SD=0.202 and
parameters Pr>|t| P10 = 0.98 is not significantly different from Pr>|t|=0.94 in P7.

4.11.4 P10A versus TS1

P10A is constructed from testing set TS1. Figures 4.47–4.48 show how values in P10A
and TS1 are also related. In Figure 4.48 two areas appear

1 An upper area >100.0 is presented by just two high-grade isolated samples: 308.240
and 218.59 Au g/t (see Table 4.2).

2 A middle section 40.0–90.0 Au g/t is represented by three highest values: 86.46;
72.19 and 42.06 Au g/t and

3 a low area, in which the most frequent samples in both sets occur in range 0.0–2.0
Au g/t. This range lie on one line.
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Listing 4.13. R–statistical comparison for P10A and TS1
24 # Compare d i s t r i b u t i o n s
25 s e t . s eed (1000)
26 d a t a s e t <− data . f rame ( x=rnorm (100) , y=rnorm (100) ,
27 z=rnorm (100) )
28 d a t a s e t $p10a <− with ( da ta s e t ,
29 rnorm (100 , mean=x+2∗y+z , sd =0.1) )
30 m <− lm ( p10a~x+y+z , d a t a s e t )
31 p l o t ( p r e d i c t (m) , d a t a s e t $p10a ,
32 x l a b=" p r e d i c t e d " , y l a b="TS1" )
33 a b l i n e ( a=0,b=1)
34 theme_bw ( )
35 par ( mfrow = c (2 , 2) )
36 p l o t (m)

In terms of the presence of similar statistical extreme values (cf. Table 4.2), P10A
is near similar to P5. A side-by-side comparison of P10A and P5 (Figures 4.43–4.49)
suggests that the models graphically comparable, they are of the same type, conceptually
comparable, describe similar matters and show relatedness to TS1.

In contrast to expectations, not much evidence available to suggest that adding 5
extra hyperplanes have significantly changed the shape of the distribution or enhanced
P10A (cf. Figure 4.48 and Figure 4.44.

Figure 4.42. Stacked statistical plots comparing P10A and TS1.
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4.12 Preliminary results

Essentially the same procedures have been applied to the all datasets.
It was found that that the distributions in P5 and P10A are graphically comparable,

semantically similar, they are of the same type, conceptually comparable, describe similar
matter and show relatedness to TS1 and the actual dataset.

As to P7 and P10, they are also graphically comparable, semantically similar and
they are of the same type. The property that makes the compared sets similar is the
distribution of the densities of means.

However, the compared sets are different in terms of the location of the generated
structures, their orientation and shape. Another feature that unites the output is tha
presence of co-called model mimicry. The concept of model mimicry first proposed in
1878 by Fritz Mueller in Mueller (1878). More recent interpretation made byWagenmakers
et al. (2004) states:

If model A (assume prototype) is able to closely fit the data B (assume test set)
generated by model C (assume training set) formed by model D (assume actual data),
model A is able to behave like model D. As appears, the UML can mimic and reproduce
the properties of other objects (actual dataset).

Plot in Figure 4.44 P5 against the fitted values TS1 does not provide enough evidence
of the existence of heteroscedasticity in the errors, i.e. when the variance of the residuals
may not be constant.

Figure 4.43. P5 versus TS1, scale: 0.0–320.0 Au g/t. Higher abs values
marked in red.

Next, the range of Au grade for P10A and set limits y is changed again with f=<ylim>
and the gradient of TS1 distribution is set "lightgrey". It may appear that the horizontal
line (zoomed grey) work well for all parts of the data, for other sections of the fitted
values. In this example, the variances for the first quarter of the data, are similar to
variances for all fitted values.

Figures 4.50 and 4.44 demonstrate how well artificial logic mimics the geometry and
the distribution of TS1. Figures illustrate the ability of the synthesised prototypes being
“open” to a “message” from the actual data over their Test set which is acting as “token”.
However, a full discussion of ”model mimicry” lies beyond the scope of this study.

Data from Listings 4.7–4.12 and Figures 4.50–4.44 indicates that the amount of error
between P5/TS1 and P10A/TS1 is small. Together, P5 and P10A closely fit TS1 which
is only 1/3 size “clone” of the actual drill-core assay.
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Figure 4.44. P5 (blue) versus TS1. Scale: 0.0–10.0 Au g/t

Figure 4.45. P7 (blue) versus TS2, full-range scale: 0.0–350 Au g/t. Higher
abs values marked in red.

Figure 4.46. P7 (blue) versus TS2, scale: 0.0–10.0 Au g/t
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This effect is known as model mimicry and is described in Wagenmakers et al. (2004).
This example shows that P5 and P10A data is slightly biased.

The root of this problem is that the actual assay has been used twice
1. once to determine the best fitting parameters for training set, and
2. secondly, to assess the reasonableness of the model by the test sets.
To compare the amount of error in Prototypes 7 (7hp) and 10 (hp) generated from

TS2 is shown in Figures 4.46 and 4.48.
To conclude, the correctness of the evidence that Prototype yields data over Test set

is affected by the extent to which that training set can mimic the actual data. However,
it is important to realise that models P5–P10A (Listings 4.7; 4.12) and P7–P10 (Listings
4.9; 4.11) are not generic models because they imitate the behaviour of whole actual data
as well as some specific features over TS1. P5, P7 and P10 have been constructed from
the data absorbed by 5,7 and 10 hyperplanes.

To obtain model P10A the topological position of hyperplanes was moderately regenerated.
It may appear that the difference between the prototypes and the corresponding test
set is not significant. Visual and statistical inspection of the distributions have shown
that prototypes and their corresponding test sets have been graphically comparable (c.f.
Figure 4.50–4.44 and Figures 4.46–4.48).

This raises new question: if two distributions have identical fit parameters, similar
shapes describe similar matters and contain contextually/semantically similar elements,
would the geometries and shapes of 3-D structures be identical?

The properties and spatial positioning of prototypes, the groups of segments and the
internal structure of individual segments shown in sections 4.8.2–4.8.4 clearly indicate
that the compared structures are different. However, the comparison of the densities of
the means reveals a remarkable similarity between prototypes obtained from one testing
data.

Figure 4.47. P10 versus TS2, full range scale: 0.0–320 Au g/t. Higher abs
predicted values marked in red.

4.13 Point Cloud as the Approach to Visualisation

The increasing availability of commercial software applications for LiDAR processing
point clouds and remote sensing has provided opportunities to generate high-resolution
3-D models of mineral deposits at low cost.
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Figure 4.48. P10 (blue) versus TS2, scale: 0.0–6.8 Au g/t

Figure 4.49. P10A : TS1, full range scale: 0.0–320.0 Au g/t. Higher abs
values marked in red

Figure 4.50. P10A (blue) versus TS1, scale: 0.0–6.8 Au g/t
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A cloud in conventional LiDAR packages is a large collection of points which creates
and renders objects in 3-D. In the same way, a point cloud in GIS applications (for 3-D
mapping) is a large number of data points that exist in three dimensions. Technically, a
point cloud in GIS is a database containing points in the 3-D coordinate system (x, y, z +
attributes). Point cloud imaging seeks to reveal structures hidden by the underlying rock
of high density and makes it possible to identify abnormalities. The fusion of CLR and
point cloud processing is an efficient way to the representation of nonconvex information,
which for many technical reasons cannot be efficiently represented by standard CAD-based
tools. The advantages of such approach are as follows

1. Visualising point clouds at full resolution allows modelling an orebody at the
highest level of detail with a quality that outperforms many modelling software
and is comparable to professional hand-made models.

2. Allows the representations of the interior of an orebody, physical interventions
(drilling), as well as the distribution of grades (any mineral).

3. In case of a nonconvex set, point clouds allows the representation of volumetric
data, as is done in modern medical imaging - creating visual representations of the
interior of an orebody for spatial analysis and physical intervention (drilling), as
well as visual representation of the distribution of the recorded grades.

4. This type of visualisation is a semi-transparent raster, which supports effective
recovery of geological (and structural) features in both smooth and rough surfaces.
Instead of a flat frame with an array of pixels a planner can get a 3-D ”container”
filled with points and the mineral content (grade, chemical attribute, etc.) may
have a unique colour.

5. Remove irrelevant clusters or points.
6. The displayed results are freely switchable between mesh models for efficiency and

point cloud for accuracy not achievable in the “mining” software packages.
From the typical workflow perspective, the most important thing is that point cloud

is a very accurate digital record of a disseminated orebody. The result is saved in the
form of a very large number of points that cover multiple surfaces of clusters, without
the need to combine them in a one single structure.

4.13.1 The density of the points

It this thesis, the term density is used to describe graphical resolution of a dataset.
Generally, this means the distance from a point to point. Less dense point clouds are
obviously much quicker to capture.

Before creating a model or processing a point cloud, it may be necessary to understand
the density of the points within the dataset. Point cloud density is an indicator of the
resolution of the data: higher density means more information (high resolution) while
lower density means less information (low resolution). Modern point cloud processing
packages are capable of making a 3-D reconstruction of any environment by capturing
thousands of aligned points. 3-D models presented in 4K resolution as clouds, consist of
many millions of points, and this is far too many. In terms of density, point clouds can
be divided into three groups

1. Sparse point clouds (0.5-1 pts/m2). Clouds with such low point densities are
normally collected for large scale digital height models. Subsets of these point
clouds (either based on return number or classification) are used to create digital
terrain models (DTM).
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2. Medium-density point clouds (2-5 pts/m2)
3. High-density point clouds (5-10 pts/m2)
Very often a compromise between point density and cost of acquisition, these data

sets are suitable for satisfying most usages. They might not be dense enough for 3-D
modelling but can certainly be used to be post-processed and analysed to derive spatial
objects. However, using small number of points (below 0.5 pts/m2) to create a solid, may
yield erroneous results, reflect isolated high-grade samples, other than group of clusters,
leading to biases in modelling. That is why multiple re-runs of the DGM loop are highly
recommended to obtain the number of predictive sets required to obtain at least a sparse
cloud (0.5-1 pts/m2). The CLR is forming the basis for generation of such sets.

4.13.2 Data conversion into 3-D mesh models

Recent collaborative development of MIDAS Information Technology Co. and Samsung
allow the elimination of inefficiencies and creating mesh-free models from a cloud of
points. However, meshing remains a requirement that is used in some engineering
applications.

A mesh is part of a model, which is a collection of vertices, edges and faces. Assume
that a face is an ordered collection of vertices connected by edges that complete a loop.
It is used to describe a flat surface on the mesh. The idea is to convert point cloud data
into intelligent 3D mesh models.

Assume that each predicted point has its own set of x, y, z coordinates and additional
attributes such as grades. In a 3-D Cartesian coordinates system, a point can be
identified by three coordinates that, taken together, correlate to a precise point in space
relative to a point of origin. Then, X,Y,Z axes extend in two directions. After that, the
coordinates identify the distance of the point from the intersection of the axes (0) and
the direction of divergence, expressed as + or −.

There are several techniques and software applications for converting raw point clouds
to 3-D objects. Input files are raw x, y, z coordinates in .csv or .txt formats. For example,
modern LIDAR widgets also process standard ASCII x, y, z files.

In general, all packages recommend a three-step process
1. Use a 3-D laser scanner to scan the area’s measurement.
2. Import the obtained point cloud into point-cloud modelling software. The software

lets one visualise and model the point cloud, which at that stage looks rather like
a pixelised, digital version of an area of interest sits.

3. Export the point cloud from the software and import it into a CAD system.

4.13.3 The hand-made approach to orebody wireframing

Creating a wireframe (if required) is more complex process. It is critical to understand
that the wireframe of orebody cannot be in any shape automatically translated into
resource or reserve CAD model. In practice, there are enough reasons to create (digitise)
and calibrate the wireframes manually:

1. All gold mines are being mined partially. In our case, the reefs and other structures
are mostly tilted to the north east at angle from ]20◦ to ] >60 dip◦. This means
when mining, the steeper the dip, the more localised the subsidence is likely to
be. Faults, voids and groundwater levels also can give rise to fault steps. During
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mining, steeply dipping stopes will tend to remain open and may pose a thread
to operation. For production safety, highly unstable zones in some cases are being
excluded from the reserve base.

2. Due to the complexity of the relationships between grades and barren rock zones,
the wireframe(s) are constructed manually from manually drawn and joined parallel
strings.

3. Some hand-made 3-D models of narrow-vein systems can achieve arbitrary levels
of detail and fidelity.

As to point clouds, they cannot be automatically translated into a solid. Along with
increasing computation power, most algorithms are still only tools shortening time for
point cloud modelling. The reality is that drilling data → CAD or cloud → CAD
conversion cannot be a fully automatic process as well. The point cloud interpretation
process is still needed for human involvement and managing point clouds manually.
However, solving this problem is a matter of time.

The density and the size of a cloud are subject to modification. Nearly all existing
software packages offer to change the display settings for point clouds to simplify the
display and improve performance. It is also possible to apply colour stylisations to
visually represent the point cloud data.

However, manual adjustments are still labour intensive, expensive and time consuming
for large mapping projects. For example, in LiDAR applications, program performance
and visual noise is still manually managed by increasing or decreasing the number of
visible points and point size.

4.14 Conclusion

The actual assay (4.4) showed only variability of grades from hole to hole, such that,
there are many unexplored areas with potentially worthwhile targets left between the
drillholes. The main goal of Chapter 4 has been the design of a machine learning system,
which is capable of predicting the mineral content in these unexplored areas.

Through a survey of the literature, it has been found that the clusterwise linear
regression is one of the most promising methods to be utilised. Therefore, it has been
decided to explore the applicability of CLR in the hope of answering a question: “is it
possible to apply the CLR to the prediction of the existence/absence of exploration targets
from the available (limited) drilling data?”

The literature illustrated a number of advantages brought by CLR and suggested that
a reformulation of the objective function could provide good forecasting outcome.

Then, the problem of predicting the gold has been reformulated into a clusterwise
linear regression problem and solved as a nonconvex nonsmooth optimisation problem. A
framework of a decision support predictive methodology has been designed. An execution
code, by which solutions to highly constrained optimisation problem be solved reliably
and efficiently has been written (Appendix B).

The system has been tuned up for solving complex geological and topological constraints
as well as nonlinear problems related to the presence of heterogeneity in data. Formally,
it has been attempted to identify potentially gold-bearing localised occurrences missed
during exploration. Next, the developed unsupervised learning system has been applied
for predicting the gold distribution over a real-world area of 6766.2 m3 using 5334
samples, of which 4669 were found valid and were involved in the computation.
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After that, to improve the accuracy of prediction, the local search has been performed
with the discrete gradient method (DGM) which learned the data through class-related
hyperplanes and computed four sets of locally optimal solutions, using minimal regression
mean-squared error (RMSE). The system avoided some limitations of the traditional
methods and constructed consistent approximations in the form of multi-object structures.

Finally, the applied UML system has brought data to optimality on its own without
humans intervention and solved locally optimal instances in the actual data to optimality.
Running the program several times yielded different results per each iteration.

The multiple spatial realisations permitted intrinsic heterogeneity to be transferred to
the final deterministic samples at the locations generated by the proposed method. The
results pointed at the likelihood of the presence in the data numerous clusters of gold
which have never been previously identified. It was found that the system performed
satisfactorily during all conducted runs.

4.14.1 Comparison of prototypes

To facilitate visual comparison, for histograms were plotted in the same boxplot chart.
The comparison of the distributions with multiple boxpots and a beanplot revealed
semantic similarity of P5 to P10A and P7 to P10. The applied statistics revealed that
the difference between major parameters in the compared sets have not been significantly
great.

To explore the frequency distributions of low grades (0.0–1.8 Au g/t), the prototypes
were declustered with histograms with equal bin sizes. A side-by-side comparison of four
histograms revealed a significant difference between the sets in terms of shapes, x-axes,
the distribution of bins and contrast in the skewness of the distributions.

It was found that sets P5:P10A and P7:P10 describe same matter and they are
graphically comparable. Moreover, datasets P5, P7, P10, P10A illustrate significant
similarity and relatedness to the actual data. These connections between theory and the
applied methods give a reason to believe the applied method was on the right track: the
applied clustering provided similar and comparable notions.

A comparison of the distributions revealed significant similarities between the sets
based of their structural attributes. The predicted distribution illustrated significant
relatedness to the testing data and actual drill-core assay. The features that make the
generated nonconvex set different were: the spatial positioning, geometry and orientation.

The results obtained from AIC (eg. Listings 4.4, lines 57–63; Listings 4.6, lines
112–116) were not entirely convincing. In a recent study by Velasco & González-Salazar
(2019) a strong correlation between AIC values and estimation accuracy from validation
metrics was not established.

The applied mfrow=c(2,2) R-function to comparison did not provide enough evidence
to suggest that the compared sets were significantly different.

4.14.2 The effect from adding hyperplanes

The applied polar Kernel density estimator (KDE) established that the patterns and
matrices (see Appendix D) of the probable density of means in the prototypes obtained
from one test set have been near-similar. The highest isolated concentrations of low
grades in P5:P10A and P7:P10 have been between 0.0–1.8 in one direction. The regions
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where any points in the samples have not been observed had very similar low and
ultra-low density patterns.

A comparison of the patterns and matrices have not revealed significant differences
between the sets based of their structural attributes, such as the densities of the means.
The compared distributions in P5:P10A→ Test set 1 and P7:P10→ Test Set 2 illustrate
significant relatedness to the actual drill-core assay.

The effect of adding extra hyperplanes has not been significant and has not changed
the patterns of probable densities of the means. Statistics suggested that the highest
and the lowest values in P5:P10A and P7:10A are near similar. This is a good sign. The
exploration team can utilise any set, no matter how many hyperplanes were added to
the preset number. Theoretically, one of the predictive models produced from a one Test
Set, may mathematically provide better prediction, but the amount of that advantage
will be newer known.

To sum, it was found that the increase of the number of hyperplanes does not lead to
any significant increase of the accuracy of prediction. Another word, when the number of
linear regression functions is getting larger the incremental algorithm does not necessarily
produce significantly more accurate solutions.

Importantly, the KDE suggested a significant structural difference between Test sets
1 and 2

4.14.3 Prediction

The actual assay suggests that the deposit is polymetallic and contains a combination
of different metals (copper, magnesium, nickel, manganese), and some critical technical
elements such as cadmium. Importantly, it is technically possible to recover and separate
most of these metals from this deposit.

The distribution of gold is compounded by the presence of highly disseminated low and
low–middle grades in the form of dust and small grains, which may make mineralisation
economic. There are some signs of multiple, from low to middle-grade concentrations
may occur within the strike extensive N and N-E branch.

According to Berkmam (2001), Table 4.4.2, the average predicted diameter of gold
spheres (grains) may range from 0.08 to 0.127mm. That means, at the production phase,
the low–middle grade ore treatment will probably involve gravity concentration–crushing.
The particles about 80-110 µm will probably be liberated by fine grinding. However,
to process the low-grade material on site, the dissolving of gold in a weak solution of
sodium cyanide may be required (an important cost actor).

A possible existence of locally closely-spaced low-middle grade occurrence, potentially
clustered fine-grained samples and a number of closely spaced groups of middle-grade
coarse particles (0.12 to 0.5mm) in the N and N-E parts of domain.

Ninety four gold-bearing structures, ranging from 1.0m to 15.0m in length have been
predicted. The average expected grade of the low-grade structures ≈+0.7 Au g/t. The
operator may expect numerous scattered low-middle grade occurrence ≈+1.3 across the
domain.

The shortest predicted interval =0.6m with grade +0.5 Au g/t was generated outside
the search area (lease) at depth 560m. Six distinct high-priority exploration targets
have been predicted mostly in the NN-E part between mRL210 and mRL360. One of
the potentially worthwhile targets may occur in the northern end of the domain.
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The predicted data suggests that multiple intersections ranging from 3.5 to 15.0m in
length generally grade between 1.27 and 4.85 Au g/t in ]azimuths 214–320◦ at depth
from 210 to 330 metres. Numerous insignificant interceptions between 1.0 and +1.3 Au
g/t may exist in the eastern direction. The interceptions listed below suggest the length
of segments (structures), the average grade and the depth in metres.

• Segment 11: 14.0m @ 2.34 Au g/t from 285.0m
• Segment 11: 14.7m @ 1.28 Au g/t from 300.0m
• Segment 23: 14.9m @ 4.39 Au g/t from 285.3m, likelihood of multiple occurrence
• Segment 24: 14.0m @ 1.44 Au g/t from 300.2m
• Segment 25: 13.9m @ 1.27 Au g/t from 315.0
• Segment 28: 14.0m @ 0.79 Au g/t from 360.0m, likelihood of coarse gold
• Segment 38: 13.5m @ 4.73 Au g/t from 285.0m
• Segment 39: 14.5m @ 2.44 Au g/t from 300.0m
• Segment 42: 14.0m @ 2.76 Au g/t from 345.0m, likelihood of occurrence >50 g/t
• Segment 48: 20.0m @ 4.85 Au g/t from 430.0m, likelihood of occurrence >10 g/t
• Segment 60: 14.0m @ 4.91 Au g/t from 286.0m, likelihood of occurrence >20 g/t
• Segment 62: 3.50m @ 2.11 Au g/t from 315.9m
• Segment 69: 14.0m @ 2.63 Au g/t from 285.0m
• Segment 78: 14.9m @ 3.58 Au g/t from 270.1m
• Segment 79: 14.5m @ 4.59 Au g/t from 285.0m
• Segment 85: 14.9m @ 3.23 Au g/t from 210.0m, likelihood of occurrence >50 g/t
• Segment 89: 15.0m @ 3.53 Au g/t from 270.0m, likelihood of occurrence >30 g/t
• Segment 90: 14.5m @ 4.50 Au g/t from 285.0m
Two zones of potentially stable mineralisation in N and N-E parts of domain are

suggested be the focus of the future drill campaign to commence the process of making
discoveries. However, a very limited number of data, do not let low density to form
a cloud of points. Accurate delineation of the two mineralisation zones without extra
probes is problematic.

The most important information is that the exploration of adjacent areas can be
economic.

4.14.4 Limitations

The solutions from UML provide the exploration crew with useful information on projected
grades in areas of the domain with previously unknown characteristics. However, the
limited number of predicted samples obtained from four program runs do not let exhibiting
trends in the average gold grade, as well as the fluctuations of grades across the entire
domain.

Pragmatically, prediction by optimisation should determine (or at least suggest)
the shapes of solids. More specifically, the graphical output must be an accurate
representation of 3-D scalar data (not necessarily a mesh-based), which is volume.
Importantly, the amount of actual and predicted data must be large enough for the
comprehensible representation of the distribution and conversion that distribution into
a 3-D solid.

The roots of this limitation lie in the absence of geostatistical assumptions. On the
one hand, unlike interpolation, the applied type of optimisation assumes the attribute
data are not continuous over space. Therefore, the UML does not allow the estimation
of the attribute at any selected location within the exploration boundary.



Chapter 4. Method 1: Clusterwise Linear Regression 103

On the other hand, the attributes in NSO are spatially independent and the values
closer together are not necessarily similar than the values farther apart.

As a consequence, these features make the UML unable to automatically create a 3-D
solid and provide that solid with volumetric parameters.

Finally, it was not investigated how potential end-users may comprehend the used
in chapter 4 3-D visualisation and what graphical properties make it more difficult for
end-users to understand the insights it is attempting to convey.

4.14.5 Solutions to volume visualisation

Volume visualisation remains one of the most research topics in applied visualisation,
such as magnetic resonance tomography (MRT) in which the volumetric information is
provided by virtual geometric solids.

In chapter 4 a number of renders with mathematical content were synthesised to
demonstrate complex optimisation problems within visualised contexts. The presented
stage-performed 3-D mapping has been abstracting locally optimal solutions into a
visualisation, consisting of primitives such as lines and cylinders. Each generated point
has been attributed by grade in Au g/t.

To make a near-photorealistic environment and show locally nonconvex solutions, a
3-D viewpoint has been created with the involvement of the OpenGL interface. However,
the used type of visualisation with a low point density is not new and does not let
practical triangular meshes to be created and a complete 3-D solid to be constructed.

Since the UML provided adequate information about locations and grades of predicted
points, it would be a straightforward step to extend Method 1 to a modern 3-D situation
- a cloud of points.

To make mine evaluation effective, it is proposed to generate million(s) points to form
a point cloud of middle or high density. Multiple DGM runs can generate millions of
data points in space. In this case, groups of predicted points become a cloud of points.
Converted into CAD, a high-density the cloud forms multiple semi-transparent, an MRT
image-like objects.

In this scenario, the need of a wireframe in forming external an external surfaces
is questionable. Depending on task, such point cloud can be viewed and explored in
both the OpenGL view and in the DXT in orthogonal projection. The shape, dip and
strike of such optimised structures is presented as a collection of points that represent a
"transparent" 3-D shape of the underlying structures defined by a selected coordinates
system. In a 3-D Cartesian coordinates system, a point is identified by three coordinates
x, y, z and grade.

4.14.5.1 Pessimistic solution

While the locally optimal solutions do not provide volumetric information, these can
assist in the identification of the orientation, depth and orientation of a hidden exploration
target. In the pessimistic scenario, the number of optimisation runs and consequently,
the number of generated locally optimal solutions remains limited and such dataset
becomes a non-uniform 3-D set without normals. That means the transformation of
optimisation results into triangular meshes is hardly possible. In this case, the information
on the predicted points with x, y, z Cartesian coordinates and the attributed grades
allows to
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1. Identify high priority high-grade targets and their locations.
2. Explore the potential of the zones adjacent to lease.
3. The identified high-grade zones can be used for future exploration efforts.
4. Evaluate the benefits of increasing the area of lease.

4.14.5.2 Pragmatic solution

A point of cloud becomes manageable. Increasing the number of locally optimal solutions
to a million allows their convergence into a point-cloud processing software (e.g. HighRES
integrated point cloud processor) and further export into CAD systems such as SolidEDGE
or SpaceClaim. This approach allows to drape a surface over a point cloud or wrap a
mesh around a point cloud.

1. Test high priority high-grade targets and their locations.
2. Predict zones of potentially worthwhile intersections.
3. Explore the potential of the zones adjacent to lease.
4. Orient trajectories during drilling.
5. The identified high-grade zones will be used for future exploration efforts.
6. Evaluate the benefits of increasing the area of lease.

4.14.5.3 Optimistic solution

Fog, consisting of a millions points is exported into a point cloud post- processing
software, which provides accurate conversion into a transparent geological view. This
approach allows to

1. Identify high priority and high-grade targets and their locations.
2. Explore the potential of the zones adjacent to lease.
3. Orient trajectories during drilling.
4. The identified high-grade zones will be used for future exploration efforts.
5. Evaluate the benefits of increasing the area of lease.
6. Reconstruct a number of continuous scalar functions which can be evaluated at

any arbitrary location.
7. Determine the shapes and volumes of multiple solids.
8. Exclude potentially problematic areas from the reserves.
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Chapter 5

Method 2: Penalised Regression - LASSO

Method 2 was developed in collaboration with the School of Mathematical and Physical
Sciences, University of Technology Sydney. Results obtained in this chapter were presented
on 4 April 2019 at the 3rd Australasian Commodity Markets Conference, Sydney and
submitted for publication in the paper: I.Grigoryev, J.Hinz and A.Novikov "Commodity
risk reduction by predictive modelling with the LASSO" in the Journal of Commodity
Markets (JCM), Elsevier. Financial econometrics has been omitted in the chapter.

Solving problems of uncertainty quantification and predicting the distribution of the
underlying mineral content, especially precious metals require the application of complex
cross-disciplinary methods. Recent developments in high-dimensional statistics (HDS)
and machine learning provide a variety of methods, which can be used in mine evaluation
and for efficient extraction. More specifically, some HDS methods are capable of taking
the prediction accuracy over control by the reduction of the so-called generalisation error,
which refers to a cumulative result deterioration (due to uncertain/ misspecified model
and its estimation errors) when applying predictions to new observations.

This chapter is devoted to the development of an HDS-based optimisation technique
for modelling the distribution of gold at the production stage. A penalised regression
is applied to address the problem of geological uncertainty and determine worthwhile
targets in the unexplored areas of a mine. Due to built-in strict parameter selection and
enhanced predictive performance, the presented technique provides statistically valid
and accurate modelling infrastructure.

It will be shown that geological assumptions can be combined with advanced penalised
regression to obtain a sparse statistical model with enhanced predictive ability. The
presented method helps in obtaining answers to questions related to the distribution of
gold-bearing ore within a real-world production dataset.

5.1 Feature Selection

Inability to accurately delineate a mineral deposit is considered a major impediment to
success. Several published sources (in chapter 2) reveal that the presence of structural
and functional heterogeneity in the ground require the application of increasingly advanced
quantitative optimisation methods to predict anomalies, detect worthwhile targets, minimise
exploration time and the cost of discovery.

To provide better justification for a second optimisation objective to be investigated,
additional literature on HDS was reviewed.

Statistical spatial heterogeneity (Fotheringham et al., 2002) is a condition where a
global regression model cannot describe the relationship between the response variable
and explanatory variables because of the variation of characteristics among the observations’
regions.
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According to Bermingham et al. (2015) a statistical technique, known as the feature
selection (FS) is used in situations in which the data contains some features that are
either redundant or irrelevant and can thus be removed without incurring much loss of
information (Bühlmann & Geer, 2011; James et al., 2015, Hastie et al., 2017).

More recent literature on the methods for regression (e.g. Hastie et al., 2017, Ch.3)
suggests that various types of optimisation problems can be solved with the so called
`1-norm as a regulariser. An overview of some basic optimisation algorithms for convex
problems, with an emphasis on aspects of particular relevance to regularised estimators
such as LASSO can be found in James et al. (2015) and Hastie et al. (2017).

This chapter is looking at the evaluation from a different angle of view and presents
an approach that integrates HDS and mathematical theory and is suitable for finding
global spatial optimums in real-world datasets.

Recent developments in HDS have established that the prediction accuracy can be
improved by

1. Shrinking the values of the regression coefficients (ridging)
2. Setting some coefficients to zero (LASSO)
Several surveys report that both Lasso and ridge reduce the variance of the predicted

values and may improve the overall prediction accuracy in terms of the mean-squared
error (James et al., 1996; Tibshirani et al., 2010; James et al., 2015; Hastie et al., 2017).

Seeking an appropriate method that can be used to treat the prediction of minerals
revealed that the FS methodology is a strong alternative to existing global optimisation
methods.

The main reasons why the FS is interesting are
1. The FS reduces the size of the problem to enable algorithms to work faster.
2. It makes the output easier to interpret.
3. It provides an accurate prediction on new data by minimising overfitting on the

training set (90%).
4. It provides better sparse data handling.
Feather review of modern statistical methods described by Simon et al. (2011),

Friedman et al. (2008), Tibshirani et al. (2010) and James et al. (2013) revealed
that some `1-regularisation techniques such as sparse regression, known as LASSO
perform FS as part of their overall operation. Proposed in 1996 by Tibshirani (1996),
this penalisation method is built on the `1–norm, and is now widely used to tackle
simultaneously variable estimation and feature selection in sparse problems.

As previously discussed (chapter 2), the prediction of mineral variability is often
viewed as function interpolation methodology that has been criticised for the requirement
of a number of assumptions (section 2.4.1). Classical geostatistical methods presume a
certain probabilistic structure obtained from variograms. Loosely speaking, it is assumed
that the observation of a mineral concentration at location S ∈ O follows a random field
(Z(S))S∈O indexed by points of a given geological structure O ⊂ R3.

Having adopted appropriate assumptions on this random field such as stationarity,
covariance structure, etc. and given measurements (Z(Si)Ii=1 at locations Si ∈ O, i =
1, . . . I, the estimation of Z(S0) at an unobserved point S0 6∈ {S1, . . . , SI} is defined in
terms of conditional expectations

E(Z(S0) |Z(S1), . . . , Z(SI)) (5.1)
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While a similar probabilistic framework and the estimation in terms of conditional
expectation as in (5.1) is followed in this chapter, the proposed approach is different.

Instead of relying on stationarity with an inconvenient need to specify a certain
dependence type, it is supposed that the dependence between spatial observations is
modelled naturally, in terms of a hidden structure, which contains a certain concentration
of commercially worthwhile content.

The shape, size, and content of a deposit are random and determined by a superposition
of the so-called prime deposits, which are modelled by ball-shaped structures with uncertain
radius, locations and the rock mass. Having assumed that such deposits may virtually
occur at any location of the domain, an “over-determined” spatial model is obtained,
which can be estimated using modern HDS techniques.

The idea is that the FS can bring spatial data to global spatial optimality by removing
irrelevant values from blasthole assay (5.4.1) without occurring much loss of information.
The proposed estimation is performed by the selection of a most appropriate model from
the viewpoint of its predictive accuracy.

5.1.1 LASSO versus ridge

Data sets containing more features than observations are referred to as high-dimensional
statistics (Bühlmann & Geer, 2011). A high-dimensional case can be defined as the case
where the number of features p is larger than the number of observations n, that is
p� n.

Some statistical inference such as the least squares linear regression cannot be applied
for solving HDS problems because the conventional statistical framework for fitting
many parameters is based on assuming structural smoothness, enabling the estimation
of smooth functions.

The high-dimensional inference is based on the assumption of the existence of certain
“sparsity". Since a key property of the `1-constraint is its ability to yield sparse solutions,
the term "sparse" is used in this chapter for models with few nonzero coefficients. Other
definitions and quantification of sparsity in data can be found in Bühlmann & Geer
(2011).

Linear regression is often met in many applications because this is one of the standard
statistical tools, which is usually characterised by the matrix and vector notation. Linear
regression attempts to model a dependent variable using the best straight line fit to a
set of predictor variables.

The best fit is usually taken to be one that minimises the RMSE, which is the sum
of square of the differences between the actual and predicted values of the dependent
variable.

A linear regression model is characterised by the relation

Y = Xβ∗ + ε (5.2)

Where
Y = (Yi)ni=1 are observed response variables, n ∈ N
X = (Xi,j)n,pi=1,j=1 is a given matrix
β∗ = (β∗j )pj=1 ∈p is unknown vector of coefficients (oracle)
ε = (εi)ni=1 is a random variable (zero-mean, with unknown variance σ2)



Chapter 5. Method 2: Penalised Regression - LASSO 108

n is the sample size
p denotes number of predictors

Note that the matrix entries X = (Xi,j)n,pi=1,j=1 are non-random by assumption. This
situation is referred to fixed design. The columns X·,j for j = 1, . . . , p are called predictor
realisations. In practice, the data Y , X of a linear model occur in the following settings:

Suppose that a phenomenon is modelled in terms of response variable Y1 and predictor
variables X1 = (X1,j)pj=1 with a hypothetical relation

Y1 =
p∑
j=1

X1,jβ
∗
j + ε1 (5.3)

such that ε1 and (X1,j)pj=1 are independent and the coefficients β∗ = (β∗j )pj=1 are not
known.

A sequence of n independent observations of this random phenomena is modelled by
n independent copies of (Xi, Yi)ni=1 and (X1, Y1).

Having observed the realisations Xi,· of predictor variables Xi for i = 1, . . . , n, the
design matrix X is obtained and the relation Y = Xβ∗ + ε is claimed.

The explanatory variables (X1,j)pj=1 can usually be associated with functions f1, . . . , fp
of some other (multivariate) explanatory random variable, say U1 in the sense (X1,j =
fj(U1))pj=1.

That is, the design matrix in this case, is given by a realisation of

X = (fj(Ui))n,pi=1,j=1 (5.4)

for independent copies U1, . . . , Un of U1. The model in (5.2) is linear because it is linear
in the coefficients β∗ = (β∗j )pj=1.

As mentioned above, the predictor (p-variables) can be obtained via non-linear transformation
of some (multivariate) explanatory factors. Similarly, the response variable can also be
described by some non-linear transformation of the actual observations, for instance by
their measurement on a different (logarithmic) scale. On this account, linear models are
able to capture non-linear dependencies between random phenomena.

However, the entire methodology relies on a correct choice of transforming functions,
i.e. f1, . . . , fp. In the framework of linear models, this task must be performed manually.

In applications of linear models, the estimation of β∗ from observation of (Xi, Yi)ni=1
is typically unstable, if the entries of the random vector X1 are correlated. In this case,
the least-squares estimation may be ill-posed (small eigenvalues in the matrix X>X).

Furthermore, there are applications where with more potential explanatory variables
than observations (n < p). In such situations the ridge regression (see James et al.,
2013, p.215) penalises the size of the regression coefficients, suggests solving a penalised
least squares problem

β̂(λ) = argminβ∈Rp
(
‖Y −Xβ‖2 + λ‖β‖2

)
(5.5)

with an appropriate penalisation parameter λ > 0. Note that even in the case that X
does not have full rank, this problem possesses a unique solution, which is obtained from
the equation

(X>X + λ1)β̂(λ) = X>Y, (5.6)
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Where 1 stands for the identical matrix. The ridge penalty λ causes a shrinkage of
coefficients

β̂(λ)→ 0 for λ→∞.

This usually yields a variance reduction

Var(β̂(λ)) < Var(β̂(λ′)) for λ > λ′ > 0 (5.7)

but introduces a systematic error (bias)

E(β̂(λ)) 6= β∗, λ > 0. (5.8)

The LASSO is described in James et al. (1996) as a regularisation method for
regression that uses an `1 penalty to achieve a sparse solution and the name “LASSO”
was also introduced as an acronym for Least Absolute Selection and Shrinkage. The
goal of this process is to minimise the prediction error.

This method is a variation of ridge regression because the both methods have similar
formulations. Both regularisation work by adding a penalty term to the log-likelihood
function. For further reading it is suggested a study by Bühlmann & Geer (2011).

In the case of ridge regression, the penalty term is β2
1 and in case of the LASSO the

penalty is |β1|. The quantity to be minimised in the two cases as follows

L+ λ
∑

β2
1 − in case of ridge regression

L+ λ
∑
|β1| − in case of LASSO regression

Where λ is a free parameter which is usually selected in such a way that the resulting
model minimises the out of sample error, β is regression coefficient and L is log likelihood
function.

Figure 5.1 shows the difference between the LASSO and ridge estimations. The
solid blue areas are the constraint regions, the red ellipses are the contours of the
residual-sum-of-squares function (or least squares error function). The point β̂ on Figure
5.1 depicts the unconstrained least-squares estimate. In the LASSO the constrained
region has corners, i.e. if the first point is in the proximity of the corner, then it has one
coefficient βj equal to zero.

If one have relaxed conditions on the coefficients, then the constrained regions on
Figure 5.1 are getting bigger and eventually they will hit the centres of the ellipses. Both
LASSO and ridge determine coefficients by finding the first point where the elliptical
contours hit the region of constraints.

In the case of ridge regression, the effect of the penalty term `2 is to shrink the
coefficients that contribute most to the error, i.e. the `2 reduces the magnitude of the
coefficients that contribute to increasing L, i.e. the log-likelihood function.

In the case of LASSO regression (Figure 5.1), the effect of the penalty term `1 is to set
these coefficients exactly to zero, i.e. the LASSO selects the most predictive coefficients
that provide the lowest p-values. This unique feature of the LASSO brings a major
improvement from the viewpoint of generalisation error reduction since it determines
β̂(λ) as "minimise".

Hence, the LASSO performs variable selection and models generated from the LASSO
are generally easier to interpret than those produced by ridge regression.

The only difference from ridge regression is that the regularisation term is in an
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Figure 5.1. An illustration of 2-D case of estimation for the LASSO (left)
and ridge regression (right). Adapted from James et al. (2015)

absolute value. LASSO regression can lead to feature selection whereas ridge can only
shrink coefficients close to zero. This feature is the reason of our interest to the LASSO.
This method overcomes the disadvantage of ridge regression by not only punishing high
values of the coefficients β but actually setting them to zero if they are not relevant.

With the goal of the variable selection in mind, the LASSO brings a major improvement
from the viewpoint of the generalisation error reduction since LASSO determines β̂(λ)
as a minimiser

β̂(λ) = argminβ∈Rp

‖Y −Xβ‖2 + λ‖β‖1︸ ︷︷ ︸
penalisation

 (5.9)

with l1-norm (instead of the Euclidean norm) on the coefficients

‖β‖1 =
p∑
j=1
|βj |, β = (βj)pj=1 ∈ Rp. (5.10)

*Note that in contrast to the ridge regression, this minimisation problem is not solvable
by simple linear algebra but rather needs for quadratic programming or related algorithms.
More importantly, such a solution is more appropriate because usually many coefficients
in β̂(λ) decay automatically (which yields a kind of model selection by variables reduction).

Below is the answer to why β̂(λ) is a sparse vector. Finding the unconstrained
minimum

β 7→ ‖Y −Xβ‖2 + λ‖β‖1 (5.11)

is equivalent to finding the constrained minimum

β 7→ ‖Y −Xβ‖2 subject to ‖β‖1 ≤ R (5.12)

for an appropriate boundary parameter R = R(λ). Since the ball ‖β‖1 ≤ R has sharp
edges, the solution β̂(λ) is a sparse vector, which can be determined by a very efficient
algorithm - coordinate descent. The coordinate descent finds the minimum so fast, that
it is possible to determine β̂(λ) for many (all relevant) λ ∈ R+.

Because of this, one can choose the best λ̂ through nfold cross-validation.
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Steps for the LASSO procedure are as follows
1. Divide all observations into train and test sample (90 % train, 10 % test). Do this

randomly in 10 different ways.
2. Determine β̂(λ) on train data, and with this β̂(λ) calculate the density on test

data. Average the result over all 10 data sets. Do it for (all relevant) λ ∈ R+.
3. Determine that penalty parameter λ̂, which yields the best result (averaged density

realisation) on test data.
4. Obtain the coefficients as β̂(λ̂).
To assess the quality of the model, the model parameters are estimated using LASSO

for the training and test data sets.

5.1.2 R-glmnet package

Optimisation with glmnet: for all models, the glmnet provides a range of elastic-net
penalties ranging from `2 (ridge) to `1 (LASSO). The regularisation path is computed
for the LASSO at a grid of values for the regularisation parameter λ and solves the
following problem over a grid of values of λ covering the entire range:

min
β0,β

1
N

N∑
i=1

ωiι
(
y1, β0 + βTxi

)
+ λ

[(
1− α ‖ β ‖22 /2 + α ‖ β ‖1

)]
. (5.13)

Where l(y, η) is the negative lag-likelihood contribution for observation i. For the
Gaussian case it is 1

2 (y − η)2.
The elastic net penalty is controlled by parameter α and bridges the gap between

LASSO α = 1 by default and ridge α = 0. The tuning parameter λ (regularisation
coefficient) determines the overall complexity of the model and controls the overall
strength of the penalty.

The developers of glmnet (Friedman et al., 2008) state the following:
The ridge penalty shrinks the coefficients of correlated predictors towards each other

while the lasso tends to pick one of them and discard the others. The elastic-net penalty
mixes these two: if predictors are correlated in groups, an α = 0.5 tends to select the
groups in or out together. This is a higher level parameter, and users might pick a
value upfront, else experiment with a few different values. One use of α is for numerical
stability: for example, the elastic-net with α = 1−ε for some small ε > 0 performs much
like the LASSO, but removes any degeneracies caused by extreme correlations.

The ridge penalty `2 shrinks the coefficients of correlated predictors towards each
other, while the LASSO `1 results in sparsity and tends to pick one of them and discard
the others.

By combining a squared `2-penalty with the `1-penalty the elastic net penalty is
obtained (Zou & Hastie, 2005; James et al., 2015, p.56; Hastie et al., 2017, p.73). For
example, if predictors are correlated in groups, an α=0.5 tends to select the groups in
or out together.

In section 5.5 the glmnet algorithms use cyclical coordinate descent, which optimises
the objective function over each parameter with others fixed, and cycles repeatedly until
convergence. Due to highly efficient updates and techniques such as warm starts and
active-set convergence, the glmnet usually computes the solution path very fast.

In the R-source code (Appendix C) the main function is glmnet which uses glmnet()
command to fit LASSO 5.10 model. In particular, the LASSO has been executed to
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recover gold concentrations (Appendix C) in g/m3 from marvin.csv (5.4.1) dataset.
Since the package takes only numerical variables, a function make model matrix

is required for creating x matrix, corresponding to the all available predictors and
transforming qualitative variables into dummy variables.

5.2 Some Peculiarities of Design

Suppose that within a predetermined gold-bearing rock mass O ⊂ R3 there are sparsely
distributed gold observations at locations which are based on samples obtained during
blast-hole grade control program. Then, the distribution is being estimated at each
spatial point within the targeted range. To address such problems, a number of techniques
have been suggested, which are usually based on interpolation (Table 2.1).

The proposed approach originates from the observation that the occurrence of worthwhile
content is associated with a geological structure which contains a distinct (compared to
the average area) concentration of minerals. Specifically, it is proposed to predict and
reconstruct the orebody, the shape and distribution of which should give the best possible
explanation of the taken samples.

The core idea is that having determined a notably high gold concentration y ∈ R+ at a
location x ∈ O ⊂ R3, the conditioned probability distribution for the gold concentration
(potentially valuable) at any other point x′ ∈ O ⊂ R3 depends on the Euclidean
distance ‖x − x′‖ to the location and the concentration of measured gold. Although
this dependence is difficult to quantify, it is assumed that the higher y and the smaller
the distance ‖x− x′‖, higher chance to find high concentration at point x′.

This idea is represented in terms of a kernel density.

κ : R3 → R+, x 7→ κ(x),
∫
R3
k(x)dx = l.

with the assumption that given a location l ∈ O, the function y 7→ k(x− l) represents a
prime deposit (placer) concentrated around a point l ∈ O.

This statement can be quantified as follows: given the occurrence of a prime gold
deposit located at point l ∈ O, the expectation of the averaged gold concentration
within each rock mass volume V ⊂ O is represented by a random variable, where the
(conditioned) expectation is given by∫

V
k(v − l)dv. (5.14)

To reflect the expected concentration decay depends only on distance without taking
into account any particular direction. It is assumed that

k(x) depends on Euclidean distance ‖x‖ only and decreases with ‖x‖.

Suppose further that such deposit can be located at p ∈ N different points (lj)pj=1 ⊂ O
and has different intensities (βj)pj=1. To resemble an ore body by a superposition of such
deposits, it is supposed that the expectation of the (averaged) concentration within each
rock mass volume V ⊂ O is represented by a random variable whose (conditioned)
expectation is given by
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p∑
j=1

βj

∫
V
k(x− lj)dx. (5.15)

Finally, it is agreed to explicitly construct such random variables for each rock mass
volume V ⊂ O in terms of

Y (V ) = 1
η(V )

p∑
j=1

βi

∫
V
k(x− lj)dx+ σ

η(V )ε(V ), V ∈ B(O) (5.16)

indexed by all Borel sets B(O) of O. Here, σ ∈ R+ is a predetermined parameter and
the family {ε(V ) : V ∈ B(O)} represents a so-called Gaussian white noise. This is a
family of Gaussian random variables which satisfy

ε(V ) ∼ N(0, η(V )), Cov(ε(V ), ε(V ′)) = η(V ∩ V ′), V, V ′ ∈ B(O), (5.17)

where η denotes the Lebesgue measure1.
Having agreed on the assumptions (5.16) and (5.17), determining the shape of the ore

body is being relaxed to the estimation of the parameters
l = (lj)pj=1 and β = (βj)pj=1

given the observations (yi)ni=1 of the gold concentration within a number n ∈ N of volume
samples (Vi)ni=1.
Therefore, a generic method is the maximisation of the log-likelihood density

Ll,β(y) = log
(

Πn
i=1 exp(−‖yi − µi(β, l)‖

2

2σ2η(Vi)−1 )/
√

2πσ2η(Vi)−1

)
. (5.18)

Here the numbers (µi(β, l))ni=1 is the expectation of gold concentration within the sample
volume Vi under assumption of deposit locations l = (lj)pj=1 with intensities β = (βj)pj=1

µi(β, l) =
p∑
j=1

βj

∫
Vi

k(x− lj)dx, i = 1, . . . , n. (5.19)

Following the above maximum-likelihood principle, a maximum of the function is
determined.

(R3)p × Rp → R+, (l, β) 7→ Ll,β(y) (5.20)

However, this approach has a number of significant drawbacks:
– Since the log-likelihood function is not convex, the dimension 4p of its arguments
is high.

– There are numerical issues determining its global maximum.
– The choice of the number p ∈ N of prime deposits is arbitrary and there is no
obvious way to determine this number exactly. Choosing p as too low results in a
poor model, whereas if p is too high, then a large number of parameters may cause
over-fitting and deteriorate the predictive performance of the model.

1URL http://mathworld.wolfram.com/LebesgueMeasure.html
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5.3 Proposed Design

In this section, a different approach is suggested. The idea is based on advances in
high-dimensional statistics and `1 penalties. Utilising these tools, the described above
obstacles can be overridden. To increase the chance of the problem solvability, from an
abstract perspective, a moderate-dimensional non-convex problem is reformulated into
an extremely high-dimensional convex problem. Furthermore, a built-in penalisation
of parameters with the focus on the minimisation of the generalisation errors leads to
dimension reduction while maximising the model’s predictive performance.

Having supposed that the volume samples (Vi)ni=1 have equal sizes

η(Vi) = ν0 ∈ R+ i = 1, . . . , n (5.21)

and assuming that the locations (lj)pj=1 of all prime deposits are fixed, it can be observed
that the log-likelihood function must be maximised with respect to intensity parameters
β = (βj)pj=1 only. However, the problem of finding a maximum of

Rp → R, β 7→ Ll,β(y) (5.22)

can be formulated with the the standard framework of linear models, where the unknown
coefficients β ∈ Rp are estimated under the assumption that Y = (yi)ni=1 are observations
of the response variable Y = Xβ+ ε with independent, identically normally distributed
random variables ε = (εi)ni=1 and a non-random design matrix

X = (Xi,j)pi,j=1, Xi,j =
∫
Vi

k(x− lj)dx, i = 1, . . . , n, j = 1, . . . , p. (5.23)

Note, that the centres l = (lj)pj=1 of prime deposits are fixed. To address this issue, it
is proposed that their total number p is sufficiently high, which allows a potential prime
deposit to exist virtually at every location.

At the same time, it is suggested to use a penalised regression. Instead of solving the
ordinary regression

β̂ = argminβ∈Rp‖Y −X, β‖

an adequate formulation is addressed in the form of the LASSO (5.9) with l1-norm (5.10)
on the coefficients

β̂(λ) = argmin

‖Y −Xβ‖2 + λ‖β‖1︸ ︷︷ ︸
penalization


with l1-norm on the coefficients

‖β‖1 =
p∑
j=1
|βj |, β = (βj)pj=1 ∈ Rp.

This methodology has several advantages. It allows a view from the perspective of
HDS, whose methods are designed to solve linear models under the assumptions that the
number of explanatory variables exceeds (by magnitudes) the number of observations,
having in mind that only a few (not knowing which) of the explanatory variables have
non-zero coefficients.

Furthermore, the penalised regression in the LASSO formulation performs an automated
variable selection, by determining those non-zero coefficients which maximise the predictive
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performance through an estimation of the generalisation error via nfold=10 (set by
default) cross-validation.

Note that this method is appropriate the proposed statistical estimation since it is
supposed that at virtually every location there could be a prime deposit of unknown
intensity. Realistically, almost all intensities will vanish, but it is not known which
deposits contribute to non-zero intensity.

Finally, let us emphasise that the goal of a traditional model is not to fit/smooth a
given sample of observations, but to infer a mineral concentration in the entire domain
with enhanced predictive ability while taking into account all relevant physical considerations
(for instance, the mineral clustering described in terms of the ore body concept). These
goals are achievable by the proposed methodology.

5.4 Experiment

This section presents an extract from a real-world blasthole data, also known as “Marvin",
which was collected at the production phase during the grade control program. Marvin
deposit was discovered in late 1996. Geologically, it relates to porphyry deposits and
represents an important resource and the dominant source of copper and gold. It is
located ≈100 km North of Orange and contains two major elements as a source of
revenue: copper Cu, gold Au and triuranium octoxide U3O8 as sub-product.

5.4.1 Geological settings

In 2004 the Marvin mine carried out a grade control exercise to define ore and waste using
gold samples obtained from vertical blast holes in order to delineate the gold-bearing
ore for the next four benches to be dug from the RL455.

The 119 horizontally spaced as 5×2.5 metres blastholes ≈10m long were drilled from
the surface by rotary rigs (RC method) and sampled in 2.5m vertical intervals as shown
in Figure 5.2. Geometrical limits of the blasthole drilling grid are presented in Table
5.1.

Figure 5.2. Blasthole grid: number of developed blastholes=119,
]Dip=90◦(vertical); horizontal spacing=5m×2.5m, samples=5975;
vertical sampling intervals=2.5m; spatial limits: [X=10195m×10240m];

[Y=5461m×5494.00m]; [Z=10.1m×10.9m]
.
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On-site analysis revealed the presence of multiple clusters of gold close to the vertical
blast holes =10 metres long each. No accurate engineering assumptions regarding gold
distribution were made at the time of the grade control program due to the lack of
reliable data in between the 2.5 metres intervals.

The existence of gold within the flitch (the area is 245m×33m, or 8085m2) provided an
opportunity for a test the proposed LASSO/glmnet system for predicting the distribution
of gold at unsampled locations (i.e between blastholes and the vertical sampling intervals
as shown in Figure 5.12). Using actual drilling data shown in Figure 5.2 and Tables 5.1;
5.2 coordinates and grades were assigned to 5975 valid samples of gold.

5.4.2 Blasthole sampling data

The used parameters have been as follows: blasthole ID, x; y; z Cartesian coordinates,
the positions of drilling collars on surface at level 455 m, the length of the sampled
sections of each blasthole from/to, the true depth (m) and gold grade in g/tonne.

Lithology, stratigraphy and lithochemistry have not been considered in this experiments
because these required the application of more complex AI techniques. The geometry
and descriptive statistics for Marvin blasthole assay is summarised in Tables 5.1–5.3.

The presence of heterogeneity in Marvin indicates that even at best scenario, there
will be discrepancy between prediction and reality.

Taking into account standard processing cycle as: blasting→ excavation→ transport
→ crushing→ grinding→ separation→ concentration→ smelting, any accurate reconciliation
between the mined gold grades and predicted gold distribution becomes problematic.

Table 5.1. Bench blasthole array geometry

X min X max Y min Y max Z min Z max Field

Geometry 10195.0m 10240.0m 5461.0m 5494.0m 445.0m 455.0m 25523m3

Table 5.2. Statistics reporting on numerical variables by quantiles in g/t

Total Min Max Mean SD σ2 Q:0.05 Q:0.10 Q:0.25 Q:0.75 Q:0.95

5975 0.01 19.22 1.97 2.95 8.71g/t2 0.04 0.07 0.23 2.48 8.73

Basic description of Marvin data is summarised in Table 5.2. The data suggests the
existence of a certain trend in terms of spatial development of grades towards East.
This trend is evident in Figure 4.4 and Figure 4.5 and can be also identified from the
horizontal semivariance shown in Figure 5.3.

Table 5.3. Statistics reporting on validated numerical variables by quartiles
dividing the range of a probability distribution into continuous sectors in Au

g/t

Sample Min Max Mean St.Dev Var Q0.05 Q0.10 Q0.25 Q0.75 Q0.95
5975 0.01g/t 19.2g/t 1.97 2.9g/t 8.6 0.04g/t 0.07g/t 0.2g/t 2.5g/t 8.7g/t

The shape of the curve in the variogram in Figure 5.3 supports the idea that the
distribution of gold within Marvin is not that erratic. Low grades are present in all
directions and high grades are not present in all directions. The variorgam settings are
set as follows:
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i. Omni-directional in horizontal plane with lag=1m
ii. Domain=whole field. The chosen partition=whole field
iii. The Cut-off grades set: 0; 2; 4; 6; 8; 10; 12; 14; 16; 18 g/t.
iv. Compositing Length=1.25m with minimum length=0.1m.
v. Maximal distance=10.5m; slicing height=0.1m
Since the average length of vertical blast holes has been =10 metres, the vertical

variogram is much harder to accurately fit and interpret. Therefore, pre-processing
estimation needs to be performed. To do this, a spherical model is applied with no-nugget
effect involved. Figure 5.4 presents experimental curve of the vertical spherical variogram:

i. The experimental variance= 8.59213 (g/t)2

ii. Vertical Lag = 0.6m.
iii. Maximum distance=6.24m, slicing radius=0.5m
iv. Vertical Sill = 3.95875 (g/t)2

Figure 5.3. Marvin’s horizontal spherical variogram.

Next, a swath variational analysis is applied which compares between sample points
and estimated values to identify a bias towards underestimation or overestimation and
the presence of any smoothing in the results.

The swath plots shown in Figures 5.5–5.7 show the average grade for the blocks in
the swath along with the averaged sample values in the swath. Figures illustrate the
averaged values against the averaged block grades for a series of swaths slicing through
the block model in the North-East direction.

A swath plot shown in Figure 5.5 illustrates that the apparent grade increases considerably
with an increase of depth. Figure 5.6 detects a shift of higher grades towards the North.

Figure 5.7 shows the presence of a stable trend in terms of a consistent increase of
grades with the depth. It appears that the plots in Figures 5.5–5.11 provide enough
evidence for the existence of the trend in increasing high grades with decreasing of RL.

Kriging estimates in Figures 5.8–5.11 indicate that the development of underlying
flitch can be viewed as (potentially) economically profitable.

To explore the distribution, four gold favourability maps are created using kriging.
The realisations shown in Figures 5.9–5.10 indicate that depending on the depth, the
flitch 10m may contain gold concentrations ≥19.00 ppm. or 19 Au g/t. The cut-off grade
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Figure 5.4. Marvin’s vertical spherical variogram (10m) shows that gold
variability is not increasing with the increase of distance.

Figure 5.5. Swath plot reveals considerable increase of high grades towards the East.
Axis Y shows associated Au g/t values. Declustered values are marked as black open

circles above the boxes

Figure 5.6. Swath plot reveals the increase of high grades in the Northern
direction
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Figure 5.7. Swath plot showing a developing trend in increasing gold grades
with depth and the existence of high localised grades below RL445.

Figure 5.8. Distribution of ore in the form of isopath from RL455 to RL452.5 obtained
from kriging. RC sampling interval (length) 0.0m–2.5m., collars are marked as red

crosses.

Figure 5.9. Distribution of ore from RL452.5 to RL450, kriging, sampling
interval 2.5m–5.0m. The trend in higher grades is evident.
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Figure 5.10. Distribution of ore from RL450 to RL447.5, kriging, sampling
interval 5.0–7.5m

Figure 5.11. Distribution of ore from RL447.5 to RL445, sampling interval
7.5–10m, consistent increase of grades with the depth.
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=0.5 g/t has been applied to all models by default to display the contrast between low
and higher grades.

Low grades are present at the locality 5470N/10230E. Relatively high grades may
occur at 5485N/10210E. The cross-sections from kriging indicate the presence of developing
trend in increasing grades with depth. The extraction and processing of rock mass of
underlying flitch can be economic.

However, the Eastern region shows a very low reading. Realising that the grade
control data has been derived from only a part of the mine, gold concentrations may be
different elsewhere.

From an engineering point of view, the depth below RL445 should be worthy for close
attention because the underlying horizontal levels are likely to have larger amount of
gold. Comparing four cross-sections side-by-side (Figures 5.8–5.11), one may conclude
that the distribution is not gradational. The sampling intervals 2.5 metres are too large
to make an assumption on gold potential.

Figure 5.12. Figure shows blastholes developed by RC. Samples taken in
2.5 metres vertical interval. The levels to be predicted are marked as red

dotted lines.

Marvin is porphyry-related deposit and hosts gold and copper. The blast holes were
developed with reverse circulation drilling (RC). This type of drilling produces small size
rock chips. Then, the chips taken in intervals 2.5 metres (see Figure 5.12) were brought
to the surface by compressed air and then collected in bags.

Sampling in 2,5 metre intervals (Figure 5.12) provides enough information to define
copper. However, the length 2.5 is not enough for accurately predicting the gold.

The knowledge of the variation of gold grades along 2.5m intervals is a lot more
commercially interesting than just knowing the averaged grade of a 2.5m thick level.
Therefore, the task is to predict “what is going in between these 2.5m intervals?".

1. Gold content is represented by several, potentially narrow structures.
2. Exploratory drilling cannot meaningfully take place.
3. The edges of the structures are poorly defined, making their definition at the time

of extraction difficult.
4. Economic cut-off grade is unknown. Lowering the cut-off grade will result in a

steady increase in the tonnage to be extracted and milled.
5. If cut-off grade increased, the impact of dilution may be large.
Marvin is the case when it is unclear which factor is the most important in defining

the distribution - economic cut-off grade or the shapes. In any scenario, the knowledge
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of the content between the sampled intervals is highly desirable.
An alternate way is to predict ore outlines by in between the sampling intervals,

enabling gold projection from one horizontal section to another for presenting better
defined, high-priority structures before actual extraction commence. Here is the engineer’s
dilemma

1. how to predict the distribution of gold in between 2.5m intervals?
2. how to define the ore shapes, positions and boundaries for efficient production?
The lines marked in red dots in Figure 5.12 are the levels at which the LASSO will

predict the concentrations and gold content in g/m3 of rock mass.

5.5 Method Implementation

In this section the estimation of model parameters through iterative application of the
`1-penalty is implemented. The source code with comments is presented in Appendix C.

Predicting gold variability within Marvin is a moderate-dimensional nonconvex problem.
To make it solvable, the problem is moderately reformulated into a high-dimensional
convex problem.

a) At the beginning, a number (p = 700) of deposit centres is randomly scattered
around the area to be investigated. Each kernel is represented by a normal density
whose mean equals the corresponding deposit centre, with the same variance.

b) The coefficients are estimated using standard LASSO method with 10-fold cross
validation for penalisation parameter selection.

c) Each deposit centre, which has non-zero coefficients is disturbed (its kernel variance
and kernel centre are changed randomly). The deposit with zero coefficients are
removed and those obtained via disturbance are added to the potential set of
deposits.

d) The steps b) and c) are repeated (five to seven times, lines 65–68 in source code
in Appendix C). The results are depicted in Figures 5.13–5.16.

5.6 Results

It is fair to suggest that the blasted flitch is likely to be mined in one 10 metre lift
with truck-and-shovel method. In this scenario, the cost of extraction is high. The
cross-sections from kriging and LASSO do not provide enough evidence that the gold
concentrations may not be considered as anomalous.

The flitch is rather marginal and depends on the efficiency of ore treatment. Logically,
low-cost processing by simple gravity treatment may cover the expenditure of the development.
Importantly, the depth below RL445 (the underlying flitch) should be worthy for a more
closed attention because the underlying levels are likely to have a larger amount of gold.
The adjacent flitch at the Easterly locality is suggested for careful grade control.

The results of the extraction of “non-zero” coefficients and deleting irrelevant values
are shown in the form of horizontal cross sections in Figures 5.13–5.16, which illustrate
the overall predictive performance of `1 estimator for matrix completion and show gold
variation per m3 of rock mass.
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The favourability maps obtained from multiple program runs appropriately represent
the boundaries between barren rock and the ore closely associated with gold.

It is apparent from Figures 5.13–5.16 that gold distribution is erratic. It clearly
indicates low continuity with higher gold grade potential at the northwestern locality.

The maps obtain from LASSO and kriging indicate that gold in the localised and
disseminated form exists at all levels (1.875m; 3.75m; 5.625m and 7.5 metres) below
the drilling collars. There is an apparent trend of increasing middle/ high grades with
depth.

Relatively intense Au concentrations appear in the vicinity of locality 5475N/ 10190E
which is nearly the maximum anomaly contrast. The models obtained from kriging and
LASSO clearly indicate that

1. The extraction and processing of the underlying flitch can be economically profitable.
2. The flitch adjacent to the Eastern part may have some economic potential.
Commands dat, centres, obs, resp, the glmnet fit and the extraction of nonzero

coefficients are available via the environment and R-console during running the code
(Appendix C). Each R-code execution generates set of centres C1, C2,.., C500, etc. as
shown in Listings 5.1.

Then, nfold=10 cross-validation is applied, irrelevant values are removed and “nonzero”
coefficients are extracted. It has to be noted that multiple runs (the loop from line 79 to
181) provide the same set of “non-zero” coefficients which form the basis for predictive
mapping.
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Figure 5.13. Predicted production target favorability map in Au g/m3 at
depth =1.875m, where high grades contrasting low grades. Model indicates
the presence of a developing trend towards North-East direction with overall
increase of grade and the existence of internal dilution in SE and E directions

assigned the colour green. Note: "2" in the upper title =warm start.
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Listing 5.1. Set of computed centres
24 [ 1 ] "C3" "C8" "C30" "C74" "C100" " C110 " " C168 " " C173" " C200 " "C232 "
25 [ 1 1 ] " C236 " " C260 " " C275" " C314 " "C338 " " C339" " C346 " "C462" " C472 " " C494 "
26 [ 2 1 ] " C558 " " C578 " " C647" " C666 " "C687 " " C695"
27 [ 1 ] 3 .000000 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000
28 [ 8 ] 3 .000000 3.000000 3.000000 3.000000 3.000000 3.127384 2.800745
29 [ 1 5 ] 3 .144847 2.716084 3.265503 3.264992 2.844915 3.252711 3.118251
30 [ 2 2 ] 3 .161754 3.212044 3.273708 3.285459
31 [ 1 ] "C1" "C4" "C7" "C8" "C9" "C10" "C12" "C15" "C19" "C21" "C23"
32 [ 1 2 ] "C24" "C28" "C29" "C37" "C39" "C40" "C41" "C42" "C43" "C46" "C47"
33 [ 2 3 ] "C48" "C51" "C52"
34 [ 1 ] 3 .000000 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000
35 [ 8 ] 3 .000000 3.000000 3.127384 2.800745 3.144847 3.265503 3.264992
36 [ 1 5 ] 3 .252711 3.161754 3.212044 3.273708 3.285459 2.813359 2.812365
37 [ 2 2 ] 3 .221475 2.910224 2.757218 2.856110 3.282293 3.276477 3.542000
38 [ 1 ] "C1" "C2" "C5" "C7" "C8" "C9" "C10" "C11" "C12" "C13" "C14"
39 [ 1 2 ] "C15" "C17" "C18" "C20" "C22" "C23" "C24" "C25" "C27" "C28" "C29"
40 [ 2 3 ] "C31" "C37" "C41" "C46" "C48" "C50"
41 [ 1 ] 3 .000000 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000
42 [ 8 ] 3 .000000 3.000000 3.127384 2.800745 3.144847 3.265503 3.264992
43 [ 1 5 ] 3 .252711 3.161754 3.273708 3.285459 2.813359 2.812365 3.221475
44 [ 2 2 ] 2 .910224 2.757218 2.856110 3.282293 3.276477
45 [ 1 ] "C1" "C2" "C3" "C4" "C5" "C6" "C7" "C8" "C9" "C10" "C11"
46 [ 1 2 ] "C12" "C13" "C14" "C15" "C16" "C18" "C19" "C20" "C21" "C22" "C23"
47 [ 2 3 ] "C24" "C25" "C26" "C27"
48 [ 1 ] 3 .000000 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000
49 [ 8 ] 3 .000000 3.000000 3.127384 2.800745 3.144847 3.265503 3.264992
50 [ 1 5 ] 3 .252711 3.161754 3.273708 3.285459 2.813359 2.812365 3.221475
51 [ 2 2 ] 2 .910224 2.757218 2.856110 3.282293 3.276477
52 [ 1 ] "C1" "C2" "C3" "C4" "C5" "C6" "C7" "C8" "C9" "C10" "C11"
53 [ 1 2 ] "C12" "C13" "C14" "C15" "C16" "C17" "C18" "C19" "C20" "C21" "C22"
54 [ 2 3 ] "C23" "C24" "C25" "C26"
55 [ 1 ] 3 .000000 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000
56 [ 8 ] 3 .000000 3.000000 3.127384 2.800745 3.144847 3.265503 3.264992
57 [ 1 5 ] 3 .252711 3.161754 3.273708 3.285459 2.813359 2.812365 3.221475
58 [ 2 2 ] 2 .910224 2.757218 2.856110 3.282293 3.276477
59 [ 1 ] "C1" "C2" "C3" "C4" "C5" "C6" "C7" "C8" "C9" "C10" "C11"
60 [ 1 2 ] "C12" "C13" "C14" "C15" "C16" "C17" "C18" "C19" "C20" "C21" "C22"
61 [ 2 3 ] "C23" "C24" "C25" "C26"
62 [ 1 ] 3 .000000 3.000000 3.000000 3.000000 3.000000 3.000000 3.000000
63 [ 8 ] 3 .000000 3.000000 3.127384 2.800745 3.144847 3.265503 3.264992
64 [ 1 5 ] 3 .252711 3.161754 3.273708 3.285459 2.813359 2.812365 3.221475
65 [ 2 2 ] 2 .910224 2.757218 2.856110 3.282293 3.276477
66 [ 1 ] "C1" "C2" "C3" "C4" "C5" "C6" "C7" "C8" "C9" "C10" "C11"
67 [ 1 2 ] "C12" "C13" "C14" "C15" "C16" "C17" "C18" "C19" "C20" "C21" "C22"
68 [ 2 3 ] "C23" "C24" "C25" "C26"
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Figure 5.14. Production target favorability map at depth =3.75m in Au
g/m3. Stable trend identified, model indicates significant geometrical

changes accompanied by the mean and median displacements.
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Figure 5.15. A realisation of cross-section at depth =5.625m. Model
indicates consistent increase of Au grades with the depth.
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Figure 5.16. A realisation of cross-section at depth =7.5 metres. The
apparent Au grade increases considerably with the increase of depth.
Contours illustrate a preferential trend in the northeasterly direction. The
extraction of the underlying level, i.e. below RL445 can be economically
profitable. The adjacent flitch at the Easterly locality requires for careful

grade control.
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Figure 5.17. The effect of randomly removing subsets of the data for cross-validation.
The cross-section at depth=7.5m in PDF obtained from second program restart from
line=78. The same graphical output from one run (sf. Figure 5.16) to the next is

unlikely to happen. Adobe starts vectorisation from the first emerged centre.
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Figure 5.18. The effect of “randomness" at depth =3.75m generated from 2nd
program restart from line=78 (sf. Figure 5.14).

5.7 Conclusion

The undertaken in Chapters 2 and 5 surveys revealed that
1. Developing predictive tools that are both user-friendly and efficient is an extremely

challenging task.
2. Since the nature of gold distribution within the flitch is not well defined (too large

sampling intervals), it is not possible to create the best global method for making
predictions, because all existing methods have limitations to a greater or lesser
extent.

3. In general, as the flexibility of a method increases, its interpretability decreases.
The most important aspects that need to be considered for design
a. A method should reflect the nature of ore extraction.
b. Realistic applicability (not just theoretical) of the developed method to real-world

scenarios.
The existence of heterogeneity and the lack of reliable data between RC samples

inspired the idea for developing a convex optimisation method in which the prediction
would not be derived from variograms and be capable of solving nonconvex tasks,
simultaneously providing globally optimal and statistically-valid solutions. This idea
got its continuation in a formal attempt to develop a method based on penalisation
principle.

5.7.1 Indirect suggestions found in the statistical literature

Statistical literature suggested that a regularisation by penalty:
• for Akaike information criterion (AIC), one needs to exclude insignificant variables.

For instance, the penalty

λ‖β‖0 (‖β‖0 number on non-zero entries),
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is computationally demanding and in high dimensional settings is infeasible. For
example, Velasco & González-Salazar (2019) suggest that AIC should not be used
if R-users interested in prediction more than explanation.

• the l2 norm ‖β‖2 does not exclude variables.
• the l1 norm ‖β‖1 is working
• for elastic net: use a penalisation λ(α‖β‖1 + (1 − α)‖β‖2) (for instance, with
α = 1/2).

A number of studies (section 5.1) suggest that the `1-norm may provide a computationally
attractive, theoretically justified form of regularisation. The LASSOmethod was admitted
as more restrictive in estimating the coefficients because it sets a number of them to
exactly zero. Due to built-in strict parameter penalisation, the LASSO methodology
appears to be less sensitive to the presence of heterogeneity in data. The built-in focus
on the predictive performance of the LASSO can provide accurate spatial analysis.

5.7.2 Design considerations

The idea was that a global predictive model can be be fitted via penalised maximum
likelihood. It was proposed that the regularisation path needs to be computed by glmnet
R-package for the LASSO penalty at a grid of values for the regularisation parameter
lambda.

To reduce computational complexity, a convex nonlinear programming optimisation
code with nonconvex objective function has been executed. Having only a small number
of “non-zero” parameters the code selects predictors and shrinks their coefficients toward
zero relative to the least-squares estimates.

“Marvin” dataset provided a context to explore optimisation problem of gold distribution
within the deposit. The performance of the `1-penalty LASSO glmnet system has been
tested on this data. The predicted gold distribution between the sampled intervals has
been visualised with R as the distribution of gold content per m3 of rock mass.

5.7.3 Observations

An interesting phenomenon can be observed from graphical output. Because the fitting is
based on randomly removing subsets of the data for cross-validation, the same graphical
output from one run to the next is unlikely to happen.

This effect can be seen by comparing Figure 5.16 with Figure 5.17 and Figure 5.14 with
Figure 5.18 rendered in PDF. Figures reflect the distributions of the same cross-sections
at 7.5 and 3.75 metres depth but obtained from different program restarts from line 78
(Appendix C).

Because of randomness, the centres are not plotted simultaneously. Adobe starts
rendering from the first emerged centre. As a consequence, there are some insignificant
graphical discrepancies between the models obtained from program restarts from line 78.
The application of .png or .jpg partially resolves that problem and the output become
graphically similar. Despite a lower resolution, .png and .jpg provide better graphical
consistency from all subsequent runs.

This phenomena relates to other cross-validated with 10fold function estimators
(kriging, IDW). Ten R-runs will result in ten insignificantly different renders.
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5.7.4 LASSO versus kriging - which method is more predictive?

The separate application of either kriging or `1 estimations does not guarantee the
expected realistic accuracy.

The methods are not competitive, they just look at the prediction from different
angles of view. Describing similar matter, they represent different statistical concepts
and utilise different metrics. For example, both methods indicate the presence of trend
(which is not weak) in increasing grades with depth. A firm confirmation that LASSO
prevails over the kriging in terms of predictive accuracy has not been established.

From an engineering perspective, the rate of change of gold grades in the “kriged”
models, especially between RL455–RL447.5 (Figures 5.9–5.11 display sharp changes in
grades and ore/waste contacts) is too rapid and the borders of the extraction targets are
not well defined.

From the other hand, not much evidence available to suggest that the flitch is anomalous.
The shape of dilution (barren rock) is more critical during plant operation than the
location of insignificant concentrations of the gold. The Cu/Au deposits such as “Marvin”
are usually extracted by blocks, in a 10m lift by a shovel with bucket capacity >20 m3.
That means the impact of the excessive amount of dilution may be large. From a
production supervisor’s viewpoint, the borders rendered by LASSO and a g/m3 metrics
are more convenient to utilise during levelling with on-board GPS.

It is important to realise that Method 2 is not a more predictive than kriging. It
only has a built-in tendency to estimate coefficients as zero - the larger the penalty
coefficient logλ is, the greater is that tendency. Method 2 does not provide significantly
more realistic representation of the distribution. However, ore/ waste mineable shapes
and the extraction targets are better presented and understood.

It needs to be admitted, however, that due to strict parameter penalisation, Method 2
is less susceptible to the erratic distribution and the presence of heterogeneity. Since the
`1 penalties were convex, the assumed sparsity in the available data lead to significant
computational efficiency. From a practical point of view, the patterns plotted by ML
better represent extraction rationality. Method 2 does not require an end-user to be
familiar with basic programming to execute the prediction.

5.7.5 Computational efficiency

The program (Appendix C) was stable during all executions and demonstrated the ability
to compute full regularisation paths. Method 2 fulfils the task with minimum amount of
time, consuming a low amount of RAM and did not overload the memory. The maximal
time taken for running LASSO/ glmnet from cold start was 1 min 50 sec.

It has also been observed that the the `1-norm is a less flexible approach than some
other regression methods and more interpretable than linear regression because in the
final model the response variable was only related to a small subset of the predictors.
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Method 2 highlights: The most important aspects of the prediction with the
application of the LASSO-regularised classifier for finding the global optimum have
been assembled as experienced through our research and work in the mining industry.

– The concept of feature selection is found as potentially applicable to evaluation.
It has been proposed that the prediction accuracy can be improved with
`1-norm by setting regression coefficients to zero.

– The problem of predicting the distribution of gold has been tackled by
reformulating it into a high-dimensional convex optimisation problem which
has been solved with the application of the `1 penalised regression.

– The “non-zero” coefficients were extracted using `1 penalisation with built in
nfold=10 cross validation. The regularisation path has been computed for the
LASSO penalty at a grid of values for the regularisation parameter lambda.

– Each program run provides one global optimum in the form of gold
concentrations in g/m3.

– Results from both LASSO and kriging indicate the presence of the trend
towards North-East direction with overall increase of grade with depth and
the existence of internal dilution in SE direction. Both methods suggest the
existence of localised occurrence of middle/ high localised grades withing the
underlying flitch, the development of which can be economically profitable.

– Method 2 is fast fulfils the task with minimum amount of time consuming, low
amount of RAM and does not overload the memory. The average time taken
for running the system have been from 110 sec to 160 sec.

– Standard implementation of glmnet can deal efficiently with spatial problems.



131

Chapter 6

Discussion

The problem of predicting gold is as old as mining. All known methods based on
statistical models and mathematical concepts do not guarantee exact prediction and
realistic representation of the gold that exists in deposits.

The developed methods 1 and 2 have been the result of research, engineering design
and complex decision-making process in which mathematics, high-dimensional statistics,
programming, 3-D modelling, geoscience and the authors experience in the geophysical
exploration have been applied to convert the available data optimally to meet predictive
objectives. Both predictive methods are currently not in existence and have never been
previously described in the literature.

6.1 Method 1

Gold distribution prediction is a very complex procedure that requires the simultaneous
consideration of a number of geophysical, spatial, structural and economic constraints.
Some conventional methods often fail to deal with nonconvex geological sets. Accurate
prediction of gold in highly heterogeneous and structurally complex geological environment,
in fact, relates to a class of NP-hard problems that can not be reliably solved with
currently existing techniques.

The investigated drilling data was limited and extremely erratic, ranging from high
to low spatial continuity. Therefore, it was impossible to define reliable gold distribution
everywhere in the domain. Basis analysis revealed that the mineralisation had the form
of erratic and localised occurrences. The recovered grades ranged between 0.0 and 355.5
g/t.

Through a survey of the literature, it has been found that clusterwise linear regression
is one of the most promising methods to be applied to the problem of predicting Cartesian
x, y, z coordinates of the gold consentrations and the attributed grades between widely
spaced drillholes.

The problem has been tackled by reformulating the prediction into a CLR problem.
The developed UML 3.7 system has been tuned for solving complex geological and
topological constraints as well as nonlinear problems related to the presence of heterogeneity
in the underlying geology. An attempt was made to identify hidden targets, big footprints
of ore and the localised occurrences of gold between widely spaced drillholes.

To improve the accuracy of prediction, the local search has been conducted with the
discrete gradient method, in which the data was learned through class-related hyperplanes
and computed four sets of local optimums using minimal regression mean-squared error
(RMSE).
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6.1.1 Key observations

The UML system constructed consistent approximations in the form of multi-object
predictive structures (prototypes). The outcome appeared as multiple structures whose
long axis radiated from the surface. All generated structures were located away from the
actual drillholes. In contrast to expectations, the trajectories of the structures tended to
radiate from a single point(s) on the surface (drill collars) winding down in a continuous
and gradually widening curves to form helix-like shapes. The angular deviations between
trajectories were observed as from 0.0061 to 0.0366 radian.

It was found that the structures had tended to mimic the behaviour of the actual
trajectories and the extracted drill-cores. The synthesised 5601 sub-structures imitated
the actual drilling parameters such as length of drill cores, dip◦, azimuth◦, maximal
depth and grades.

It was observed that two test sets demonstrate remarkable resemblance to the actual
drilling data. Side-by-side comparison of the sets supported an idea that the sets can
perform similarly well on predicted values. The feature that makes predictive structures
similar is near-similar distribution of the densities of the means.

It was found that the increase of the number of hyperplanes in CLR model does not
lead to any significant increase of the accuracy of prediction.

The system performed satisfactorily during all conducted runs, utilising a low amount
of RAM. The process of prediction was one that was entirely AI controlled subject to
available drilling data with humans able only to observe and interpret upon output.

6.1.2 Limitations

Method 1 was found to have the following limitations:
1. The obtained locally optimal solutions only point towards locations where the gold

might be located. A compensation for the absence of geostatistical assumptions
they, though not unexpected, has been inability of Method 1 to create 3-D solid(s)
and provide them with volumetric information.

2. An attempt to create a solid with a relatively small amount of predicted data may
yield erroneous results. An attempt to reflect isolated high-grade samples, other
than group of clusters with convectional CAD system may lead to biases in 3-D
modelling.

3. A source of insignificant limitation is that each program restart (loop re-run)
generates new unique set of solutions which can not be repeated.

4. Requires investments in time and mathematical development.
5. It is computationally demanding and requires a user to be familiar with basic

programming to execute the simulation.
6. Due to the nature of the data to analyse, statistical description is a difficult and

resource-intensive process.

6.1.3 Visualisation

The most effective way to visualise locally optimal solutions is point cloud processing.
The representation of nonconvex data can be considered as a 3-D raster, which supports
adequate extraction of geometrical features of multiple, potentially rough objects. In
this case, one can get a 3-D box filled with points, and the grades with unique colours.
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More generally, a geological point cloud becomes a database containing points in the
Cartesian coordinate system x, y, z and Au grade.

Considering the fact that more than one million solutions can be generated for one
hour, the density of a sparse point cloud can be 0.5–1 pts/m2. A medium density point
cloud of 2–5 pts/m2 can be achieved by the involvement of 1.5 million points.

In this scenario, geological point clouds can be used to represent volumetric data,
as is sometimes done in medical imaging and the visualisation of point clouds at full
resolution allows modelling of multiple solids at the highest level of detail, unachievable
by conventional GIS systems.

There is a large number of commercial packages that can import x, y, z data, convert
the data into point clouds and to pre-process the data for 3-D modelling. Some applications,
such as Trimble RealWorks and Pix4D compute optimal point cloud densification. Other
packages can convert data into accurate 3D meshing (Leica Cyclone), and provide point
classification (Pointools).

Some recently introduced applications can automatically adjust colouring (Bentley
Descartes) and texturing (RealityCapture) of 3-D models. Unfortunately, all these
applications are expensive and the most important features are not accessible to most
PhD students.

6.1.4 Potential end-users

The strength of Method 1 is that it can suggest the existence of gold occurrence at
specific regions where multiple low-grade intersections are misleading.

This can be done by setting geometrical limits (the box) with the “search dialogue"
which defines maximum and minimums in a particular area of interest. This approach
could improve initial targeting and significantly reduce the number of drill holes required
to discover a resource.

Apart from important drilling attributes such as target depth, pull-down, rate of
penetration and number of rods being used, the crew gains a feel for the gold potential to
facilitate efficient targeting. Since the built-in incremental algorithm constantly refines
the accuracy of prediction as new drilling data become available, the method can be
viewed as a decision-support system for designing optimal drilling grids, and calculation
of sufficient amount of exploration drilling. Method 1 can also be involved in testing
larger areas.

Method 1 can be effectively utilised in situations when
1. an exploration lease is adjacent to a promising property which has not been

explored but potentially worthwhile and
2. the value of this property is based on the exploration potential.
As a decision-support system, Method 1 can help security institutions and the banking

community in establishing the fair market value of grassroots exploration projects in the
open market. The system can allow an investor to identify future potential problems
and to recover losses before actual mine development and production begins.

6.2 Method 2

The existence of heterogeneity in a part of a mine inspired the idea for developing
a convex method in which the prediction would be capable of solving nonconvex tasks
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simultaneously providing statistically-valid global solutions. A number of studies suggested
that the feature selection approach would provide a computationally attractive, theoretically
justified form of regularisation, which makes the output easier to interpret.

6.2.1 Why feature selection is used?

Predictions of minerals are not precise, being dependent on the limited information
available on location, shape and distribution of the occurrence and on the limited
sampling results. In selecting the LASSO as the basis, the goals were:

1. The applicability of the method to real-world extractive scenarios.
2. The nature of mining should be considered.
LASSO regularisation was selected for the ability to add a penalty term to the

log-likelihood function. This method not only punishes high values of the coefficients β,
but also sets them to zero if they are not relevant. This unique feature brought a major
improvement from the viewpoint of generalisation error reduction.

6.2.2 Key observations

Due to strict parameter penalisation, Method 2 is less susceptible to the erratic gold
distribution and the presence of heterogeneity in the blasthole data. The 10 cross-validation
method was applied to assessing the accuracy of the predicted 2-D cross-sections within
the investigated flitch. Since the `1 penalties were convex, the assumed sparsity in the
data lead to significant computational efficiency.

The system was stable during each execution (loop re-runs) and demonstrated the
ability to compute full regularisation paths. The average time taken for running the
code from cold start has been 1 min 50 sec. It was found that the built-in focus on
predictive accuracy can provide spatial analysis of significantly bigger spatial data, >50
thousand samples and to serve as a platform for further evaluation techniques.

6.2.3 Advantages

The advantages of the LASSO are as follows
1. RC samples are large, often longer than 2.5 metres and much less variable. In such

situations prediction of the gold in between the sampling intervals by kriging is
complex. LASSO creates predictive models significantly faster.

2. In kriging, the anisotropy is depicted by computing the variogram in different
directions. Since the LASSO is the penalisation/ cross-validation system, it does
not require variography.

3. Standard R-studio is an open source environment for R. It is accessible, does not
require the application of commercial GIS packages and can be used off-line, at
the extraction site.

4. The blasted flitch is to be mined in one 10 metre lift with a mining shovel with
bucket capacity (heaped 1:1) from 20 to 50 m3. The variation of density of
rock in oxide Cu/Au deposits (such as Marvin) is usually large and may range
from 2.1 to 3.8 g/cm3 (or 2.1–3.8 t/m3). At truck-and-shovel extraction stage,
gold distribution in g/m3 is a more convenient metric for the extraction crew to
comprehend.
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5. The investigated orebody is unstructured, the shapes of low-grade boundaries are
gradational. LASSO assists in fast decision making on equipment set up for efficient
extraction. The location of high-priority extraction targets is better defined.

To sum, the `1-norm and glmnet provided useful insight on the ore distribution and
the location of high-priority production targets within the flitch. Prediction with the
LASSO is the first practical step to illustrate this approach in a modern high-dimensional
programming language. It was found that the built-in focus on predictive accuracy can
provide a spatial analysis of significantly larger data sets and serve a platform for further
statistically-valid evaluation techniques.

6.2.4 Limitations

Method 2 was found to have three limitations:
1. The fitting is based on randomly removing subsets of the data for cross-validation.

2-D rendering (plotting) is the last stage, which begins from line 172. The same
graphical output from one loop run to the next is unlikely to happen.

2. Selecting PDF for rendering is not recommended. Regardless of an operating
system, the application of Adobe vectorisation during multiple runs may result in
the appearance of insignificant geometrical differences between models (see Figure
5.17). Instead of PDF (Appendix C, line 159), it is suggested .png or .jpg to be
used because these formats are less sensitive to the sequence of pixelisation.

3. Smoothness and the requirement to average 2-D graphics. Prior to making a
decision, a comparison of the cross-sections obtained from subsequent runs is highly
desirable.

However, these limitations are not significant and do not have an impact on the output.

6.2.5 Potential end-users

The application of Method 2 is not limited to the production stage. In the grassroots
exploration phase, the most useful feature of the LASSO is the automatic graphical
representation of cross-sections through short (pre-set) intervals. Depending on PC or
MAC hardware, hundreds of predictive cross-sections can be plotted in a reasonably
short time.

Apart from important drilling attributes such as target depth, pulldown, rate of
penetration and number of rods being used, the exploration crew gains a feel for gold
potential. The method allows assuming a sufficient amount of drilling and facilitates
efficient targeting. LASSO makes it possible to point to the likelihood of the existence
of exploration targets at the beginning of the program.

The method is a user-friendly, accessible, can be used offline, at remote areas and
does not require online licence verification. The only requirement is regular drilling
database updates and revisions. Through the use of the program, the exploration and
extraction crews can see in near-real time the effect of the taken decisions in the search
for the presence, the absence and the extension of high-priority mineralisation. Since the
method is fast and the cost is not prohibitive, it is integrable into any drilling software
(PC, Unix, Linux, etc.).

Method 2 would also be beneficial to the mine consulting professionals who are
working in machine learning tasks.
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6.3 Future Work

Gold extraction is going deeper. The average depth of discovery for gold deposits in
Australia is rising 10 metres per decade. By 2032, half of all Australia’s gold production
will come from deposits yet to be discovered. To predict and discover a world-class
Tier 1 or smaller economical deposits, the mining industry will require more efficient
exploration and the development of tools that can provide greater precision in less time
and for less money.

Extensions to the work done in this thesis may be focused on the development of free
and user-friendly predictive applications with convex and nonconvex objective functions
that are capable of taking into account geological and structural uncertainty. Future
research will be devoted to the development of an affordable and accessible applications
that are capable of representing 3-D shapes of the underlying mineral content defined
by a selected coordinate’s system.

It may be helpful to undertake additional studies on the automatic convergence of
solutions into point clouds and provide the required density for a more accurate 3-D
resource modelling in semi-transparent view.
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Appendix A: Raw data transformation source
code fortran

Execution code: transformation of raw drill-core Snd assay to input format. Syntax
adjusted to LATEX2

26 c=============================================================
27 c Trans f o rmat i on from a c t u a l to i n p u t fo rmat s y n t a x a d j u s t e d to LaTeX2e
28 c=============================================================
29 c main programm
30 i m p l i c i t doub l e p r e c i s i o n ( a−h , o−z )
31 PARAMETER( maxrec =100000 , maxnft =30)
32 doub l e p r e c i s i o n a1 ( maxrec , maxnft ) , a2 ( maxrec , maxnft )
33 1 , a3 ( maxrec , maxnft ) , a4 ( maxrec , maxnft ) , a ( maxrec , maxnft )
34 open (40 , f i l e =’ R e s u l t s . t x t ’ )
35 open (78 , f i l e =’ d a t a i n p u t 1 . t x t ’ , s t a t u s=’ o l d ’ , form=’ fo rmat t ed ’ )
36 open (79 , f i l e =’ d a t a i n p u t 2 . t x t ’ , s t a t u s=’ o l d ’ , form=’ fo rmat t ed ’ )
37 open (80 , f i l e =’ d a t a i n p u t 3 . t x t ’ , s t a t u s=’ o l d ’ , form=’ fo rmat t ed ’ )
38 c=================================================================
39 n f t 1=3
40 n f t 2=3
41 n f t 3=3
42 do i =1, maxrec
43 r ead (78 , ∗ ,END=901 ,ERR=900) ( a1 ( i , k ) , k=1, n f t 1 )
44 n r e c o r d 1=i
45 end do
46 900 s top ’ E r r o r i n i n p u t f i l e ’
47 901 WRITE(40 , ∗ ) ’ I n p u t complete . Number o f r e c o r d s : ’ , n r e c o r d 1
48 WRITE(40 , ∗ )
49
50 do i =1, maxrec
51 r ead (79 , ∗ ,END=903 ,ERR=902) ( a2 ( i , k ) , k=1, n f t 2 )
52 n r e c o r d 2=i
53 end do
54 902 s top ’ E r r o r i n i n p u t f i l e ’
55 903 WRITE(40 , ∗ ) ’ I n p u t complete . Number o f r e c o r d s : ’ , n r e c o r d 2
56 WRITE(40 , ∗ )
57
58 do i =1, maxrec
59 r ead (80 , ∗ ,END=905 ,ERR=904) ( a3 ( i , k ) , k=1, n f t 3 )
60 n r e c o r d 3=i
61 end do
62 904 s top ’ E r r o r i n i n p u t f i l e ’
63 905 WRITE(40 , ∗ ) ’ I n p u t complete . Number o f r e c o r d s : ’ , n r e c o r d 3
64 WRITE(40 , ∗ )
65 c================================================================
66 c STEP 1
67 n1=1
68 n2=1
69 do i =1, n r e c o r d 1
70 1 do j =1, n f t 1
71 a4 ( n2 , j )=a1 ( i , j )
72 end do
73 do j =1, n f t 2
74 a4 ( n2 , j+n f t 1 )=a2 ( n2 , j )
75 end do
76 n2=n2+1
77 i f ( n2 . gt . n r e c o r d 2 ) go to 49
78 i f ( a2 ( n2 , 1 ) . l e . a2 ( n2−1 ,1) ) then
79 go to 3
80 e l s e
81 go to 1
82 end i f
83 3 end do
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84 49 c o n t i n u e
85 n3=n f t 1+n f t 2
86 c==========================
87 c STEP 2
88 n6=0
89 do i =1, n r e c o r d 3
90 c1=a3 ( i , 1 )
91 do j =1, nrecord2−1
92 c2=a4 ( j , 4 )
93 c3=a4 ( j +1 ,4)
94 i f ( ( c1 . ge . c2 ) . and . ( c1 . l t . c3 ) ) then
95 n6=n6+1
96 do k=1,6
97 a ( n6 , k )=a4 ( j , k )
98 end do
99 do k=1,3

100 a ( n6 , k+6)=a3 ( i , k )
101 end do
102 go to 8
103 end i f
104 end do
105 8 end do
106 do i =1,n6
107 a ( i , 9 )=dmax1 ( 0 . 0 d+00,a ( i , 9 ) )
108 end do
109 w r i t e (40 , ∗ )
110 do i =1,n6
111 w r i t e (40 ,43) ( a ( i , j ) , j =1 ,9)
112 end do
113 43 format (9 f12 . 2 )
114 c l o s e (40)
115 c l o s e (78)
116 c l o s e (79)
117 c l o s e (80)
118 s top
119 end
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Appendix B: UML Source code fortran

Method 1 №1: Computation of local optimums for drill-core data. Original syntax
adjusted to LATEX2

71
72
73 c i m p l i c i t doub l e p r e c i s i o n ( a−h , o−z )
74 PARAMETER( maxvar =2000)
75 doub l e p r e c i s i o n x l ( maxvar ) , xu ( maxvar ) , x0 ( maxvar ) , x ( maxvar )
76 c=============================================================================
77 c I n p u t data :
78 c n − number o f v a r i a b l e s
79 c n l i n e q − number o f l i n e a r e q u a l i t i e s
80 c neq − number o f n o n l i n e a r e q u a l i t i e s
81 c n l i n i n e q − number o f l i n e a r i n e q u a l i t i e s
82 c n ineq − number o f n o n l i n e a r i n e q u a l i t i e s
83 c=============================================================================
84 n = 10
85 n l i n e q = 0
86 neq = 0
87 n l i n i n e q = 0
88 n ineq = 0
89 c=============================================================================
90 c l o we r and upper bounds f o r v a r i a b l e s :
91 c x l − l o we r bound
92 c xu − upper bound
93 c I f they a r e not g i v e n take x l < −10^5 and xu > 10^5
94 c=============================================================================
95 do i =1,n
96 x l ( i ) = −1.d+08
97 xu ( i ) = 1 . d+08
98 end do
99 do i =1,n

100 x l ( i ) = −32.78
101 xu ( i ) = 32 .78
102 END do
103 c=============================================================================
104 c S t a r t i n g p o i n t
105 c=============================================================================
106 do i =1,n
107 x0 ( i ) =1.0d+01
108 END do
109 c=============================================================================
110 c C a l l i n g DFHM1
111 c=============================================================================
112 c a l l dgm01 ( n , neq , n l i n e q , n l i n i n e q , n ineq , x l , xu , x0
113 1 , x , f v a l u e , conva lue , cput ime )
114 STOP
115 END
116 c=============================================================================
117 c# I n t h i s s u b r o u t i n e we d e s c r i b e the problem e n t e r i n g
118 c# o b j e c t i v e f u n c t i o n and c o n s t r a i n t s
119 c=============================================================================
120 s u b r o u t i n e func ( x , o b j f , c o n l i n e q , c o n l i n i n e q , coneq , con ineq )
121 i m p l i c i t doub l e p r e c i s i o n ( a−h , o−z )
122 PARAMETER( maxvar =2000 , maxcon=2000)
123 doub l e p r e c i s i o n x ( maxvar ) , coneq ( maxcon ) , con ineq ( maxcon )
124 1 , c o n l i n e q ( maxcon ) , c o n l i n i n e q ( maxcon )
125 c=============================================================================
126 c coneq − a r r a y o f n o n l i n e a r e q u a l i t i e s
127 c c o n l i n e q − a r r a y o f l i n e a r e q u a l i t i e s
128 c c o n l i n i n e q − a r r a y o f l i n e a r i n e q u a l i t i e s
129 c con ineq − a r r a y o f n o n l i n e a r i n e q u a l i t i e s
130 c=============================================================================
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131 p i =3.141592654d+00
132 f 1 =0.d+00
133 f 2 =0.d+00
134 do i =1 ,10
135 f 1=f1+x ( i ) ∗x ( i )
136 f 2=f2+dcos ( 2 . 0 d+00∗ p i ∗x ( i ) )
137 END do
138 o b j f =−2.d+01∗ dexp (−2.d−01∗ d s q r t ( f 1 / 1 .0 d+01) )−
139 1 dexp ( f2 / 1 .0 d+01)+2.d+01+dexp ( 1 . 0 d+00)
140 c=============================================================================
141 r e t u r n
142 end
143 c=============================================================================
144 c# This s u b r o u t i n e c a l l s both l o c a l and g l o b a l s o l v e r s : OPTIMUM and OPTIMUM1.
145 c# I t a l s o c a l l s s u b r o u t i n e s to s o l v e the system o f l i n e a r e q u a t i o n s and i d e n t i f y box c o n s t r a i n t s .
146 c# This g e n e r a t e s output f i l e s : r e s u l t s . t x t and l o c a l _ s o l u t i o n s . t x t
147 c=============================================================================
148 s u b r o u t i n e dgm01 ( nvar , neq , n l i n e q , n l i n i n e q , n ineq , x l , xu , x0
149 1 , x f i n a l , ob , fpeng lob , cput ime )
150 i m p l i c i t doub l e p r e c i s i o n ( a−h , o−z )
151 PARAMETER( maxvar =2000 , maxcon=2000)
152 doub l e p r e c i s i o n x ( maxvar ) , x3 ( maxvar ) , x0 ( maxvar )
153 1 , x l ( maxvar ) , xu ( maxvar ) , x low ( maxvar ) , xup ( maxvar ) , coneq ( maxcon )
154 2 , con ineq ( maxcon ) , c o n l i n e q ( maxcon ) , c o n l i n i n e q ( maxcon )
155 3 , c1 ( maxcon , maxvar ) , x f i n a l ( maxvar ) , x 2 f i n a l ( maxvar )
156 INTEGER l 1 ( maxvar ) , l 3 ( maxvar ) , i nd l ow ( maxvar ) , indup ( maxvar )
157 COMMON / cbound / xlow , xup , / c s i z e /m, / c i t e r / n i t e r , / c indbound / indbound
158 1 , / cconeq /numeq , / c c o n i n /numineq , / cpen f / f c o n s t , / cpen / p e n a l t
159 2 , / c l 3 / l3 , n2 , / cc1 /c1 , / c n s h i f t / n s h i f t , / c c o n l i n e q / numlineq , / c l 1 / l 1
160 3 , / c s i z e 1 /m1, /cnumneq/numneq , / c i n d i c a t o r / ind low , indup
161 4 , / c o b s t a r t / o b j s t a r t , / c c o n l i n i n e q / n u m l i n i n e q
162 5 , / cncons t / nconst , / c n f / nf , / cnewpo int / newpoint
163 c h a r a c t e r ∗30 o u t f i / ’ r e s u l t s . t x t ’ /
164 open (40 , f i l e =o u t f i )
165 c a l l cpu_t ime ( t ime1 )
166 c=============================================================================
167 WRITE(40 , ∗ )
168 WRITE(40 ,112)
169 112 FORMAT( ’ ∗∗∗∗ DISCRETE GRADIENT METHOD ∗∗∗∗∗∗ )
170 WRITE(40 , ∗ )
171 WRITE(40 ,115)
172 115 FORMAT( ’ ( c ) FoST ’ )
173 WRITE(40 , ∗ )
174 WRITE(40 ,15)
175 15 FORMAT( ’ ( c ) F e d e r a t i o n U n i v e r s i t y A u s t r a l i a ’ )
176 WRITE(40 , ∗ )
177 WRITE(40 , ∗ )
178 WRITE(40 , ∗ )
179 WRITE(40 ,1113)
180 1113 FORMAT( ’ ’ S o l v e r System f o r d r i l l a s s a y nonsmooth o p t i m i s a t i o n ’ )
181 WRITE(40 , ∗ )
182 WRITE(40 , ∗ )
183 WRITE(40 ,113)
184 113 FORMAT( ’
185 WRITE(40 , ∗ )
186 WRITE(40 , ∗ )
187 c============================================================================
188 c a ccu rac y f o r s o l u t i o n f e a s i b i l i t y
189 eps1 =1.d−06
190 c a ccu rac y f o r accep tance o f s o l u t i o n
191 eps2 =1.d−04
192 m=nvar
193 m1=m
194 c box c o n s t r a i n t s
195 do i =1,m
196 xlow ( i )=x l ( i )
197 xup ( i )=xu ( i )
198 end do
199 numl ineq=n l i n e q
200 numeq=neq
201 n u m l i n i n e q=n l i n i n e q
202 numineq=n ineq
203 numneq=neq
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204 ncons t=numeq+n u m l i n i n e q+numineq
205 ncons t1=ncons t+numl ineq
206 c n f − t o t a l number o f f u n c t i o n c a l l s and n i t e r − t o t a l number o f i t e r a t i o n s
207 n f=0
208 n i t e r =0
209 c===========================================================================
210 c# P r i n t i n g i n f o r m a t i o n on i n p u t data i n f i l e r e s u l t s . t x t
211 c===========================================================================
212 WRITE(40 , ∗ )
213 w r i t e (40 ,1 )
214 1 FORMAT( ’ I n p u t data ’ )
215 w r i t e (40 , ∗ )
216 w r i t e (40 ,11) m1
217 11 FORMAT( ’ Number o f v a r i a b l e s ’ , i 5 0 )
218 WRITE(40 , ∗ )
219 w r i t e (40 ,1112) numl ineq
220 1112 FORMAT( ’ Number o f l i n e a r e q u a l i t y c o n s t r a i n t s ’ , i 3 2 )
221 WRITE(40 , ∗ )
222 w r i t e (40 ,1114) n u m l i n i n e q
223 1114 FORMAT( ’ Number o f l i n e a r i n e q u a l i t y c o n s t r a i n t s ’ , i 3 0 )
224 WRITE(40 , ∗ )
225 w r i t e (40 ,12) numeq
226 12 FORMAT( ’ Number o f n o n l i n e a r e q u a l i t y c o n s t r a i n t s ’ , i 2 9 )
227 WRITE(40 , ∗ )
228 w r i t e (40 ,13) numineq
229 13 FORMAT( ’ Number o f n o n l i n e a r i n e q u a l i t y c o n s t r a i n t s ’ , i 2 7 )
230 WRITE(40 , ∗ )
231 WRITE(40 , ∗ )
232 WRITE(40 , ∗ )
233 WRITE(40 ,1118)
234 1118 FORMAT( ’ I n i t i a l p o i n t g i v e n by u s e r : ’ )
235 WRITE(40 , ∗ )
236 do i =1,m1
237 w r i t e (40 ,100) i , x0 ( i )
238 end do
239 WRITE(40 , ∗ ) ’____________________________________________________ ’
240 c=============================================================================
241 c# P r o j e c t i n g onto box ( i f s t a r t i n g p o i n t i s o u t s i d e the box )
242 c=============================================================================
243 fbox1 =0.d+00
244 do i =1,m
245 fbox1=fbox1+dmax1 ( 0 . d+00, x low ( i )−x0 ( i ) )
246 1 +dmax1 ( 0 . d+00, x0 ( i )−xup ( i ) )
247 end do
248 i f ( fbox1 . gt . 0 . d+00) then
249 WRITE(40 , ∗ )
250 WRITE(40 ,1014)
251 WRITE(40 , ∗ )
252 1014 FORMAT( ’ The i n i t a i l p o i n t i s o u t s i d e the box ’
253 1 ’ and i t i s p r o j e c t e d onto i t ’ )
254 end i f
255 do i =1,m
256 IF ( x0 ( i ) . l t . x low ( i ) ) x0 ( i )=xlow ( i )
257 IF ( x0 ( i ) . gt . xup ( i ) ) x0 ( i )=xup ( i )
258 end do
259 c============================================================================
260 c a l l v a r i n d
261
262 p e n a l t =1.d+03
263
264 c a l l l i n e a r e p
265 c============================================================================
266 do i =1,m
267 x ( i )=x0 ( l 1 ( i ) )
268 end do
269 c============================================================================
270 n s h i f t =2
271 c a l l f v ( x , f , o b j f )
272 o b j s t a r t =1.d+02∗ dabs ( o b j f )
273 fpen2=f c o n s t
274 c============================================================================
275 WRITE(40 , ∗ )
276 WRITE(40 ,77) f
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277 77 FORMAT( ’ Value o f the a g g r e g a t e f u n c t i o n at i n i t i a l p o i n t ’ , f 21 . 8 )
278 c============================================================================
279 c# C a l c u l a t i o n s o f c o n s t r a i n t v i o l a t i o n s at i n i t i a l p o i n t and t h e i r
280 c# d e s c r i p t i o n i n output f i l e : r e s u l t s . t x t
281 c============================================================================
282 i f ( ncons t1 . gt . 0 ) then
283 WRITE(40 , ∗ )
284 WRITE(40 ,2118)
285 2118 FORMAT( ’ C o n s t r a i n t v i o l a t i o n s at i n i t i a l p o i n t : ’ )
286 WRITE(40 , ∗ )
287 end i f
288 c a l l f unc ( x0 , o b j f , c o n l i n e q , c o n l i n i n e q , coneq , con ineq )
289 v i a l t o t =0.d+00
290 i f ( numl ineq . gt . 0 ) then
291 WRITE(40 , ∗ )
292 WRITE(40 ,2119)
293 2119 FORMAT( ’ L i n e a r e q u a l i t i e s : ’ )
294 WRITE(40 , ∗ )
295 do i =1, numl ineq
296 c o n v i a l=dabs ( c o n l i n e q ( i ) )
297 v i a l t o t=v i a l t o t+c o n v i a l
298 w r i t e (40 ,101) i , c o n v i a l
299 end do
300 end i f
301 i f ( n u m l i n i n e q . gt . 0 ) then
302 WRITE(40 , ∗ )
303 WRITE(40 ,2120)
304 2120 FORMAT( ’ L i n e a r i n e q u a l i t i e s : ’ )
305 WRITE(40 , ∗ )
306 do i =1, n u m l i n i n e q
307 c o n v i a l=dmax1 ( 0 . d+00, c o n l i n i n e q ( i ) )
308 v i a l t o t=v i a l t o t+c o n v i a l
309 w r i t e (40 ,101) i , c o n v i a l
310 end do
311 end i f
312 i f ( numeq . gt . 0 ) then
313 WRITE(40 , ∗ )
314 WRITE(40 ,2121)
315 2121 FORMAT( ’ N o n l i n e a r e q u a l i t i e s : ’ )
316 WRITE(40 , ∗ )
317 do i =1,numeq
318 c o n v i a l=dabs ( coneq ( i ) )
319 v i a l t o t=v i a l t o t+c o n v i a l
320 w r i t e (40 ,101) i , c o n v i a l
321 end do
322 end i f
323 i f ( numineq . gt . 0 ) then
324 WRITE(40 , ∗ )
325 WRITE(40 ,2122)
326 2122 FORMAT( ’ N o n l i n e a r i n e q u a l i t i e s : ’ )
327 WRITE(40 , ∗ )
328 do i =1,numineq
329 c o n v i a l=dmax1 ( 0 . d+00, con ineq ( i ) )
330 v i a l t o t=v i a l t o t+c o n v i a l
331 w r i t e (40 ,101) i , c o n v i a l
332 end do
333 end i f
334 c============================================================================
335 IF ( v i a l t o t . gt . eps1 ) THEN
336 w r i t e (40 , ∗ )
337 w r i t e (40 , ∗ )
338 w r i t e (40 ,122)
339 122 FORMAT( ’ The s t a r t i n g p o i n t i s i n f e a s i b l e ’ )
340 END i f
341 IF ( v i a l t o t . l e . eps1 ) THEN
342 w r i t e (40 , ∗ )
343 w r i t e (40 , ∗ )
344 w r i t e (40 ,123)
345 123 FORMAT( ’ The s t r a t i n g p o i n t i s f e a s i b l e ’ )
346 END i f
347 w r i t e (40 , ∗ )
348 w r i t e (40 , ∗ )
349 w r i t e (40 ,777) v i a l t o t
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350 777 FORMAT( ’Sum of c o n s t r a i n t v i o l a t i o n s at i n i t i a l p o i n t : ’ , f 20 . 8 )
351 w r i t e (40 , ∗ )
352 w r i t e (40 , ∗ )
353 WRITE(40 , ∗ )
354 c============================================================================
355 n s h i f t =1
356 c a l l optimum ( x )
357 c============================================================================
358 n s h i f t =2
359 p e n a l t =1.d+01
360 102 c a l l optimum ( x )
361 c a l l f v ( x , f , o b j f )
362 i f ( f c o n s t . ge . eps1 ) then
363 p e n a l t =1.d+01∗ p e n a l t
364 IF ( p e n a l t . l e . 2 . d+04) GO TO 102
365 end i f
366 c a l l f v ( x , f , o b j f )
367 c a l l r e s t o r e p o i n t ( x , x3 )
368 c============================================================================
369 7 FORMAT( ’ Value o f o b j e c t i v e f u n c t i o n at f i n a l p o i n t : ’ , f 20 . 8 )
370 771 FORMAT( ’ Value o f o b j e c t i v e f u n c t i o n : ’ , f 20 . 8 )
371 118 FORMAT( ’Sum of c o n s t r a i n t v i o l a t i o n s : ’ , f 20 . 1 0 )
372 18 FORMAT( ’ V a r i a b l e s : ’ )
373 100 FORMAT( ’ V a r i a b l e ’ , i4 , f 20 . 1 0 )
374 101 FORMAT( ’ C o n s t r a i n t ’ , i4 , f 20 . 1 0 )
375 c============================================================================
376 WRITE(40 , ∗ )
377 WRITE(40 , ∗ )
378 WRITE(40 , ∗ )
379 WRITE(40 , ∗ ) ’ FINAL SOLUTION : ’
380 WRITE(40 , ∗ )
381 WRITE(40 , ∗ )
382 WRITE(40 , ∗ )
383 w r i t e (40 ,7 ) f
384 w r i t e (40 , ∗ )
385 WRITE(40 , ∗ )
386 WRITE(40 ,18)
387 WRITE(40 , ∗ )
388 do i =1,m1
389 WRITE(40 ,100) i , x3 ( i )
390 end do
391 WRITE(40 , ∗ )
392 c============================================================================
393 c C o n s t r a i n t v i o l a t i o n s at f i n a l p o i n t
394 c============================================================================
395 i f ( ncons t1 . gt . 0 ) then
396 WRITE(40 , ∗ )
397 WRITE(40 ,2123)
398 2123 FORMAT( ’ C o n s t r a i n t v i o l a t i o n s at f i n a l p o i n t : ’ )
399 WRITE(40 , ∗ )
400 end i f
401 c a l l f unc ( x3 , o b j f , c o n l i n e q , c o n l i n i n e q , coneq , con ineq )
402 v i a l t o t =0.d+00
403 i f ( numl ineq . gt . 0 ) then
404 WRITE(40 , ∗ )
405 WRITE(40 ,2124)
406 2124 FORMAT( ’ L i n e a r e q u a l i t i e s : ’ )
407 WRITE(40 , ∗ )
408 do i =1, numl ineq
409 c o n v i a l=dabs ( c o n l i n e q ( i ) )
410 v i a l t o t=v i a l t o t+c o n v i a l
411 w r i t e (40 ,101) i , c o n v i a l
412 end do
413 end i f
414
415 i f ( n u m l i n i n e q . gt . 0 ) then
416 WRITE(40 , ∗ )
417 WRITE(40 ,2125)
418 2125 FORMAT( ’ L i n e a r i n e q u a l i t i e s : ’ )
419 WRITE(40 , ∗ )
420 do i =1, n u m l i n i n e q
421 c o n v i a l=dmax1 ( 0 . d+00, c o n l i n i n e q ( i ) )
422 v i a l t o t=v i a l t o t+c o n v i a l
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423 w r i t e (40 ,101) i , c o n v i a l
424 end do
425 end i f
426
427 i f ( numeq . gt . 0 ) then
428 WRITE(40 , ∗ )
429 WRITE(40 ,2126)
430 2126 FORMAT( ’ N o n l i n e a r e q u a l i t i e s : ’ )
431 WRITE(40 , ∗ )
432 do i =1,numeq
433 c o n v i a l=dabs ( coneq ( i ) )
434 v i a l t o t=v i a l t o t+c o n v i a l
435 w r i t e (40 ,101) i , c o n v i a l
436 end do
437 end i f
438 i f ( numineq . gt . 0 ) then
439 WRITE(40 , ∗ )
440 WRITE(40 ,2127)
441 2127 FORMAT( ’ N o n l i n e a r i n e q u a l i t i e s : ’ )
442 WRITE(40 , ∗ )
443 do i =1,numineq
444 c o n v i a l=dmax1 ( 0 . d+00, con ineq ( i ) )
445 v i a l t o t=v i a l t o t+c o n v i a l
446 w r i t e (40 ,101) i , c o n v i a l
447 end do
448 end i f
449 w r i t e (40 , ∗ )
450 WRITE(40 ,118) v i a l t o t
451 WRITE(40 , ∗ )
452 c============================================================================
453 WRITE(40 , ∗ )
454 w r i t e (40 ,99) n i t e r
455 99 FORMAT( ’ Tota l number o f i t e r a t i o n s ’ , i 4 2 )
456 w r i t e (40 , ∗ )
457 w r i t e (40 , ∗ )
458 w r i t e (40 ,222) n f
459 222 FORMAT( ’ Tota l number o f o b j e c t i v e f u n c t i o n e v a l u a t i o n s ’ , i 2 2 )
460 w r i t e (40 , ∗ )
461 w r i t e (40 , ∗ )
462 w r i t e (40 , ∗ )
463 c WRITE(40 ,1034)
464 c1034 FORMAT( ’No f e a s i b l e s o l u t i o n has been found ’ )
465 c a l l cpu_t ime ( t ime2 )
466 cput ime=time2−t ime1
467 WRITE(40 ,1036) cput ime
468 1036 FORMAT( ’ Tota l CPU t ime i n seconds : ’ , f 10 . 4 )
469 c============================================================================
470 CLOSE(40)
471 r e t u r n
472 end
473 c============================================================================
474 c Loc a l s o l v e r : OPTIMUM
475 c pa ramete r s : pw − power ( z (\ lambda ) ) ,
476 c s t e p 0 − c o n s t a n t from Armi jo a l g o r i t h m
477 c s l i n i t − i n i t i a l v a l u e o f s t e p i n the a p p r ox i m a t i o n s u b g r a d i e n t s
478 c s l m i n − f i n a l v a l u e o f the s t e p i n the a p p r o x i m a t i o n s u b g r a d i e n t s
479 c m a x i t e r − maximum number o f i t e r a t i o n s
480 c maxdisc − maximum number o f appreox imated s u b g r a d i e n t s
481 c============================================================================
482 s u b r o u t i n e optimum ( x )
483 i m p l i c i t doub l e p r e c i s i o n ( a−h , o−z )
484 PARAMETER( maxvar =2000 , maxcon=2000 , maxdg=1000 , max i t =100000)
485 doub l e p r e c i s i o n x ( maxvar ) , x1 ( maxvar ) , g ( maxvar ) , v ( maxvar )
486 1 ,w( maxdg , maxvar ) , prod ( maxdg , maxdg ) , z ( maxdg ) , f v a l u e s ( max i t )
487 2 , gprev ( maxvar )
488 INTEGER i j ( maxdg )
489 common / c s i z e /m, / c i t e r / n i t e r , /cpw/pwt , / cpen f / f c o n s t
490 1 , / c i j / i j , j v e r t e x , / cz /z , / ckmin /kmin , / ceps4 / eps4
491 2 , /cnumneq/numneq , / c fpen5 / fpen5 , / c fpen1 / fpen1 , / c n s h i f t / n s h i f t
492 c============================================================================
493 pw=7.d+00
494 d i s t 1 =1.d−07
495 s t e p 0 =−2.d−01
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496 d i v =6.d−01
497 s l i n i t =5.d+00
498 eps4 =1.d−05
499 eps6 =1.d−07
500 s l m i n =1.d−08∗ s l i n i t
501 m a x i t e r =50000
502 maxdisc=MIN(m+3 ,200)
503 s d i f =1.d−05
504 IF (m. l e . 3 ) mturn=4
505 IF (m. gt . 3 ) mturn=5
506 c============================================================================
507 s l= s l i n i t
508 n c y c l e s=d log ( s l m i n / s l i n i t ) / d l og ( d i v )+1
509 n c y c l e s 1=2∗ n c y c l e s /3
510 n c y c l e s=n c y c l e s +200
511 c a l l f v ( x , f2 , o b j f )
512 fpen2=f c o n s t
513 pwt=1.d+00
514 c============================================================================
515 do n c y c l e =1, n c y c l e s
516 IF ( n c y c l e . gt . 1 ) s l=d i v ∗ s l
517 IF ( s l . l t . s l m i n ) go to 4
518 c============================================================================
519 IF ( s l . gt . 1 . d−01) s t e p 0 =−2.d−01
520 IF ( ( s l . l e . 1 . d−01) .AND. ( s l . gt . 1 . d−02) ) s t ep 0 =−3.d−01
521 IF ( ( s l . l e . 1 . d−02) .AND. ( s l . gt . 1 . d−04) ) s t ep 0 =−4.d−01
522 IF ( s l . l e . 1 . d−04) s t e p 0 =−5.d−01
523 c============================================================================
524 i f ( numneq . gt . 0 ) then
525 IF ( n c y c l e . l e . n c y c l e s 1 ) eps4 =1.d−04
526 IF ( n c y c l e . gt . n c y c l e s 1 ) eps4 =1.d−05
527 end i f
528 IF ( n c y c l e . gt . 1 ) pw=9.d−01∗pw
529 i f (pw . l t . 1 . 5 d+00) pw=1.5d+00
530 t=s l ∗∗pw
531 pwt=dmin1 ( pwt , t )
532 do i =1,m
533 g ( i ) =1.d+00/ d s q r t (DBLE(m) )
534 end do
535 n i t e r 1=n i t e r +1
536 n4=0
537 c============================================================================
538 do n i t e r=n i t e r 1 , m a x i t e r
539 n4=n4+1
540 f 1=f2
541 f v a l u e s ( n i t e r )=f1
542 IF ( ( n s h i f t . eq . 1 ) .AND. ( f 1 . l t . 1 . d−04) ) GO TO 4
543 fpen1=dmin1 ( 1 . d+01∗ eps4 , fpen2+eps4 )
544 c============================================================================
545 i f ( n4 . gt . mturn ) then
546 mturn2=n i t e r−mturn+1
547 r a t i o 1 =( f v a l u e s ( mturn2 )−f 1 ) / ( dabs ( f 1 ) +1.d+00)
548 IF ( r a t i o 1 . LT . s d i f ) GO TO 1
549 end i f
550 i f ( n4 . ge . 1 0 ) then
551 mturn2=n i t e r −9
552 r a t i o 1 =( f v a l u e s ( mturn2 )−f 1 ) / ( dabs ( f 1 ) +1.d+00)
553 IF ( r a t i o 1 . LT . 1 . d−04) GO TO 1
554 end i f
555 c============================================================================
556 do ndg=1, maxdisc
557 c a l l dgrad ( x , s l , g , v , f1 , f4 , ndg )
558 dotprod =0.d+00
559 do i =1,m
560 dotprod=dotprod+v ( i ) ∗v ( i )
561 end do
562 r=d s q r t ( dotprod )
563 IF ( r . l t . eps6 ) GO TO 1
564 IF ( ndg . eq . 1 ) then
565 rmean=r
566 kmin=1
567 rmin=r
568 END i f
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569 IF ( ndg . gt . 1 ) then
570 rmin=dmin1 ( rmin , r )
571 IF ( r . eq . rmin ) kmin=ndg
572 rmean=((ndg−1)∗ rmean+r ) /ndg
573 END i f
574 t o l e r=dmax1 ( 1 . d−07, d i s t 1 ∗ rmean )
575 do i =1,ndg−1
576 prod ( ndg , i ) =0.d+00
577 do j =1,m
578 prod ( ndg , i )=prod ( ndg , i )+w( i , j ) ∗v ( j )
579 end do
580 prod ( i , ndg )=prod ( ndg , i )
581 end do
582 prod ( ndg , ndg )=dotprod
583 c===========================================================================
584 do i =1,m
585 w( ndg , i )=v ( i )
586 end do
587 c a l l w o l f e ( ndg , prod )
588 c===========================================================================
589 do i =1,m
590 v ( i ) =0.d+00
591 do j =1, j v e r t e x
592 v ( i )=v ( i )+w( i j ( j ) , i ) ∗ z ( j )
593 END do
594 END do
595 c===========================================================================
596 r =0.d+00
597 do i =1,m
598 r=r+v ( i ) ∗v ( i )
599 end do
600 r=d s q r t ( r )
601 i f ( r . l t . t o l e r ) GO TO 1
602 c===========================================================================
603 do i =1,m
604 g ( i )=−v ( i ) / r
605 x1 ( i )=x ( i )+s l ∗g ( i )
606 end do
607 c===========================================================================
608 i f ( ndg . gt . 1 ) then
609 r d i f =0.d+00
610 do i =1,m
611 r d i f=r d i f +( gprev ( i )−g ( i ) ) ∗∗2
612 end do
613 r d i f=d s q r t ( r d i f )
614 i f ( r d i f . LT . eps6 ) GO TO 1
615 r d i f=r o l d−r
616 IF ( r d i f . LT . t o l e r ) GO TO 1
617 END i f
618 c===========================================================================
619 do i =1,m
620 gprev ( i )=g ( i )
621 end do
622 r o l d=r
623 c a l l f v ( x1 , f4 , o b j f )
624 f 3 =(f4−f 1 ) / s l
625 d e c r e a s=s t e p0 ∗ r
626 i f ( ( f c o n s t . l e . fpen1 ) .AND. ( f 3 . l t . d e c r e a s ) ) then
627 fpen3=f c o n s t
628 c===========================================================================
629 c a l l a r m i j o ( x , g , f1 , f5 , f4 , s l , s tep , r , fpen3 )
630 f 2=f5
631 fpen2=fpen5
632 do i =1,m
633 x ( i )=x ( i )+s t e p ∗g ( i )
634 end do
635 p r i n t 21 , n i t e r , ndg , f2 , s l , fpen2
636 GO TO 2
637 21 format ( I6 , I4 , 3 f16 . 8 )
638 end i f
639 END do
640 c===========================================================================
641 go to 1
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642 2 END do
643 1 END do
644 4 r e t u r n
645 end
646 c=======================================================================================
647 c# S u b r o u t i n e s Wolfe and Equat i on s s o l v e s q u a d r a t i c problem to f i n d d e s c e n t d i r e c t i o n .
648 c # The number o f i t e r a t i o n i s r e s t r i c t e d by J MAX
649 c# The v e c t o r Z c o n t a i n s w e i g h t s o f ext reme p o i n t s .
650 c# The mat r i x A i s main mat r i x i n the system o f l i n e a r e q u a t i o n s from Wolfe a l g o r i t h m .
651 c# Matr i x PROD c o n t a i n s i n n e r p r o d u c t s o f s u b g r a d i e n t s
652 c=======================================================================================
653 s u b r o u t i n e w o l f e ( ndg , prod )
654 i m p l i c i t doub l e p r e c i s i o n ( a−h , o−z )
655 PARAMETER( maxvar =2000 , maxcon=2000 , maxdg=1000)
656 common / c s i z e /m, /w01/a , / c i j / i j , j v e r t e x , / cz /z , / ckmin /kmin
657 INTEGER i j ( maxdg )
658 doub l e p r e c i s i o n z ( maxdg ) , z1 ( maxdg ) , a ( maxdg , maxdg )
659 1 , prod ( maxdg , maxdg )
660 j 9=0
661 jmax=200∗ndg
662 j v e r t e x =1
663 i j ( 1 )=kmin
664 z (1 ) =1.d+00
665 c===========================================================================
666 c# To c a l c u l a t e X
667 c===========================================================================
668 1 r =0.d+00
669 do i =1, j v e r t e x
670 do j =1, j v e r t e x
671 r=r+z ( i ) ∗ z ( j ) ∗ prod ( i j ( i ) , i j ( j ) )
672 end do
673 end do
674 IF ( ndg . eq . 1 ) GO TO 5
675 c===========================================================================
676 c To c a l c u l a t e <X, P_J> and J
677 c===========================================================================
678 t0 =1.d+12
679 do i =1,ndg
680 t1 =0.d+00
681 do j =1, j v e r t e x
682 t1=t1+z ( j ) ∗ prod ( i j ( j ) , i )
683 end do
684 i f ( t1 . l t . t0 ) then
685 t0=t1
686 kmax=i
687 end i f
688 end do
689 c===========================================================================
690 c# F i r s t s t o p p i n g c r i t e r i o n
691 c===========================================================================
692 rm=prod ( kmax , kmax )
693 do j =1, j v e r t e x
694 rm=dmax1 ( rm , prod ( i j ( j ) , i j ( j ) ) )
695 end do
696 r2=r−1.d−12∗rm
697 i f ( t0 . gt . r2 ) GO TO 5
698 c===========================================================================
699 c# Second s t o p p i n g c r i t e r i o n
700 c===========================================================================
701 do i =1, j v e r t e x
702 i f ( kmax . eq . i j ( i ) ) GO TO 5
703 end do
704 c===========================================================================
705 c# Step 1( e ) from Wolfe ’ s a l g o r i t h m
706 c===========================================================================
707 j v e r t e x=j v e r t e x +1
708 i j ( j v e r t e x )=kmax
709 z ( j v e r t e x ) =0.d+00
710 c===========================================================================
711 2 do i =1, j v e r t e x
712 do j =1, j v e r t e x
713 a ( i , j ) =1.d+00+prod ( i j ( i ) , i j ( j ) )
714 end do
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715 end do
716 j 9=j 9+1
717 i f ( j 9 . gt . jmax ) GO TO 5
718 c a l l e q u a t i o n s ( j v e r t e x , z1 )
719 do i =1, j v e r t e x
720 i f ( z1 ( i ) . l e . 1 . d−10) go to 3
721 end do
722 do i =1, j v e r t e x
723 z ( i )=z1 ( i )
724 end do
725 go to 1
726 3 t e t a =1.d+00
727 do i =1, j v e r t e x
728 z5=z ( i )−z1 ( i )
729 i f ( z5 . gt . 1 . d−10) t e t a=dmin1 ( te ta , z ( i ) / z5 )
730 end do
731 do i =1, j v e r t e x
732 z ( i ) =(1. d+00− t e t a ) ∗ z ( i )+t e t a ∗ z1 ( i )
733 i f ( z ( i ) . l e . 1 . d−10) then
734 z ( i ) =0.d+00
735 kze ro=i
736 end i f
737 end do
738 j 2=0
739 do i =1, j v e r t e x
740 IF ( i . ne . k z e ro ) then
741 j 2=j 2+1
742 i j ( j 2 )= i j ( i )
743 z ( j 2 )=z ( i )
744 END i f
745 end do
746 j v e r t e x=j 2
747 go to 2
748 5 r e t u r n
749 end
750 s u b r o u t i n e e q u a t i o n s ( n , z1 )
751 i m p l i c i t doub l e p r e c i s i o n ( a−h , o−z )
752 PARAMETER( maxvar =2000 , maxcon=2000 , maxdg=1000)
753 common /w01/a
754 doub l e p r e c i s i o n a ( maxdg , maxdg ) , z1 ( maxdg ) , b ( maxdg , maxdg )
755 do i =1,n
756 do j =1,n
757 b ( i , j )=a ( i , j )
758 end do
759 b ( i , n+1)=1.d+00
760 end do
761 do i =1,n
762 r=b ( i , i )
763 do j=i , n+1
764 b ( i , j )=b ( i , j ) / r
765 end do
766 do j=i +1,n
767 do k=i +1,n+1
768 b ( j , k )=b ( j , k )−b ( i , k ) ∗b ( j , i )
769 end do
770 end do
771 end do
772 z1 ( n )=b ( n , n+1)
773 do i =1,n−1
774 k=n− i
775 z1 ( k )=b ( k , n+1)
776 do j=k+1,n
777 z1 ( k )=z1 ( k )−b ( k , j ) ∗ z1 ( j )
778 END do
779 end do
780 z2 =0.d+00
781 do i =1,n
782 z2=z2+z1 ( i )
783 end do
784 do i =1,n
785 z1 ( i )=z1 ( i ) / z2
786 end do
787 r e t u r n
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788 end
789 c============================================================================
790 c# S u b r o u t i n e d i s c r e t e g r a d i e n t : c a l c u l a t e s approx imate s u b g r a d i e n t s
791 c============================================================================
792 s u b r o u t i n e dgrad ( x , s l , g , dg , f1 , f4 , ndg )
793 i m p l i c i t doub l e p r e c i s i o n ( a−h , o−z )
794 PARAMETER( maxvar =2000 , maxcon=2000 , maxdg=1000)
795 doub l e p r e c i s i o n x1 ( maxvar ) , g ( maxvar ) , x ( maxvar ) , dg ( maxvar )
796 common / c s i z e /m, /cpw/pwt , / c n s h i f t / n s h i f t
797 a1 =0.d+00
798 do k=1,m
799 d1=dabs ( g ( k ) )
800 i f ( a1 . l t . d1 ) then
801 a1=d1
802 imax=k
803 end i f
804 end do
805 do k=1,m
806 x1 ( k )=x ( k )+s l ∗g ( k )
807 end do
808 IF ( ndg . gt . 1 ) r2=f4
809 IF ( ndg . eq . 1 ) c a l l f v ( x1 , r2 , o b j f )
810 f lambda=r2
811 dsum=0.d+00
812 do k=1,m
813 i f ( k . ne . imax ) then
814 r3=r2
815 x1 ( k )=x1 ( k )+pwt
816 c a l l f v ( x1 , r2 , o b j f )
817 dg ( k )=(r2−r3 ) /pwt
818 dsum=dsum+dg ( k ) ∗ s l ∗g ( k )
819 END i f
820 end do
821 dg ( imax )=(f lambda−f1−dsum ) / ( s l ∗g ( imax ) )
822 r e t u r n
823 end
824 c============================================================================
825 c L ine s e a r c h ( Armijo−t ype )
826 c============================================================================
827 s u b r o u t i n e a r m i j o ( x , g , f1 , f5 , f4 , s l , s tep , r , fpen3 )
828 i m p l i c i t doub l e p r e c i s i o n ( a−h , o−z )
829 PARAMETER( maxvar =2000 , maxcon=2000 , maxdg=1000)
830 common / c s i z e /m, / cpen f / f c o n s t , / c fpen5 / fpen5 , / c fpen1 / fpen1
831 1 , / c n s t e p / ns t ep
832 doub l e p r e c i s i o n x ( maxvar ) , g ( maxvar ) , x1 ( maxvar ) , f l i n e (1000)
833 1 , s l i n e (1000) , f l p e n (1000)
834 k=1
835 f l i n e ( k )=f4
836 s l i n e ( k )=s l
837 f l p e n ( k )=fpen3
838 s t e p=s l
839 1 s t e p=s t e p+s l
840 do i =1,m
841 x1 ( i )=x ( i )+s t e p ∗g ( i )
842 end do
843 c a l l f v ( x1 , f5 , o b j f )
844 ns t ep=ns t ep+1
845 fpen5=f c o n s t
846 f 3=f5−f 1 +1.d−03∗ s t e p ∗ r
847 IF ( ( fpen5 . gt . fpen1 ) .OR. ( f 3 . gt . 0 . d+00) ) GO TO 3
848 IF ( ( fpen5 . l e . fpen1 ) .AND. ( f 3 . l e . 0 . d+00) ) GO TO 2
849 2 k=k+1
850 f l i n e ( k )=f5
851 s l i n e ( k )=s t e p
852 f l p e n ( k )=fpen5
853 IF ( k . gt . 1 0 0 ) GO TO 3
854 GO TO 1
855 3 c o n t i n u e
856 s t e p=s l i n e (1 )
857 f 5=f l i n e (1 )
858 fpen5=f l p e n (1 )
859 do i =2,k
860 i f ( f 5 . gt . f l i n e ( i ) ) then
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861 f 5=f l i n e ( i )
862 s t e p=s l i n e ( i )
863 fpen5=f l p e n ( i )
864 end i f
865 end do
866 r e t u r n
867 end
868 c=============================================================================
869 c# This s u b r o u t i n e g i v e s v a l u e s o f a g g r e g a t e f u n c t i o n
870 c=============================================================================
871 s u b r o u t i n e f v ( x1 , f , o b j f )
872 i m p l i c i t doub l e p r e c i s i o n ( a−h , o−z )
873 PARAMETER( maxvar =2000 , maxcon=2000 , maxdg=1000)
874 doub l e p r e c i s i o n x ( maxvar ) , x1 ( maxvar ) , x2 ( maxvar ) , coneq ( maxcon )
875 1 , con ineq ( maxcon ) , x low ( maxvar ) , xup ( maxvar ) , c1 ( maxcon , maxvar )
876 2 , c o n l i n i n e q ( maxcon )
877 INTEGER l 1 ( maxvar ) , l 3 ( maxvar ) , i nd l ow ( maxvar ) , indup ( maxvar )
878 COMMON / c n f / nf , / c s i z e /m, / cconeq /numeq , / cc1 /c1 , / c c o n i n /numineq
879 1 , / cpen f / f c o n s t , / cpen / pena l t , / c o b s t a r t / o b j s t a r t , / c n s h i f t / n s h i f t
880 2 , / cbound / xlow , xup , / c l 3 / l3 , n2 , / c l 1 / l1 , / c s i z e 1 /m1
881 3 , / c i n d i c a t o r / ind low , indup , / c indbound / indbound
882 4 , / c c o n l i n i n e q / n u m l i n i n e q
883 c=============================================================================
884 do i =1,m
885 x ( l 1 ( i ) )=x1 ( i )
886 end do
887 do i=n2 ,1 ,−1
888 x ( l 3 ( i ) )=c1 ( i ,m1+1)
889 do j =1,m1
890 x ( l 3 ( i ) )=x ( l 3 ( i ) )+c1 ( i , j ) ∗x ( j )
891 end do
892 end do
893 i nd1=0
894 IF ( indbound . eq . 0 ) THEN
895 do i =1,m1
896 IF ( ( x ( i ) . l t . x low ( i ) ) .OR. ( x ( i ) . gt . xup ( i ) ) ) then
897 i nd1=1
898 GO TO 1
899 END i f
900 end do
901 END i f
902 1 IF ( ind1 . eq . 0 ) then
903 c a l l f unc ( x , o b j f , c o n l i n e q , c o n l i n i n e q , coneq , con ineq )
904 n f=nf+1
905 END i f
906 IF ( i nd1 . eq . 1 ) then
907 do i =1,m
908 x2 ( i )=x ( i )
909 IF ( x2 ( i ) . l t . x low ( i ) ) x2 ( i )=xlow ( i )
910 IF ( x2 ( i ) . gt . xup ( i ) ) x2 ( i )=xup ( i )
911 end do
912 c a l l f unc ( x2 , o b j f , c o n l i n e q , c o n l i n i n e q , coneq , con ineq )
913 n f=nf+1
914 o b j s t a r t=o b j f
915 c a l l f unc ( x , o b j f , c o n l i n e q , c o n l i n i n e q , coneq , con ineq )
916 n f=nf+1
917 o b j f=o b j s t a r t
918 END i f
919 c============================================================================
920 f 3 =0.d+00
921 f 4 =0.d+00
922 IF ( indbound . eq . 0 ) THEN
923 do i =1,m
924 IF ( ( i nd l ow ( l 1 ( i ) ) . eq . 0 ) .AND. ( indup ( l 1 ( i ) ) . eq . 0 ) )
925 1 f3=f3+dmax1 ( 0 . d+00, x low ( l 1 ( i ) )−x ( l 1 ( i ) ) )
926 2 +dmax1 ( 0 . d+00,x ( l 1 ( i ) )−xup ( l 1 ( i ) ) )
927 IF ( ( i nd l ow ( l 1 ( i ) ) . eq . 1 ) .AND. ( indup ( l 1 ( i ) ) . eq . 0 ) )
928 1 f3=f3+dmax1 ( 0 . d+00,x ( l 1 ( i ) )−xup ( l 1 ( i ) ) )
929 IF ( ( i nd l ow ( l 1 ( i ) ) . eq . 0 ) .AND. ( indup ( l 1 ( i ) ) . eq . 1 ) )
930 1 f3=f3+dmax1 ( 0 . d+00, x low ( l 1 ( i ) )−x ( l 1 ( i ) ) )
931 end do
932 do i =1,n2
933 IF ( ( i nd l ow ( l 3 ( i ) ) . eq . 0 ) .AND. ( indup ( l 3 ( i ) ) . eq . 0 ) )
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934 1 f4=f4+dmax1 ( 0 . d+00, x low ( l 3 ( i ) )−x ( l 3 ( i ) ) )
935 2 +dmax1 ( 0 . d+00,x ( l 3 ( i ) )−xup ( l 3 ( i ) ) )
936 IF ( ( i nd l ow ( l 3 ( i ) ) . eq . 1 ) .AND. ( indup ( l 3 ( i ) ) . eq . 0 ) )
937 1 f4=f4+dmax1 ( 0 . d+00,x ( l 3 ( i ) )−xup ( l 3 ( i ) ) )
938 IF ( ( i nd l ow ( l 3 ( i ) ) . eq . 0 ) .AND. ( indup ( l 3 ( i ) ) . eq . 1 ) )
939 1 f4=f4+dmax1 ( 0 . d+00, x low ( l 3 ( i ) )−x ( l 3 ( i ) ) )
940 end do
941 END i f
942 f 1 =0.d+00
943 do i =1,numeq
944 f 1=f1+dmax1 ( 0 . d+00, coneq ( i )−1.d−07,−coneq ( i )−1.d−07)
945 end do
946 f 2 =0.d+00
947 do i =1,numineq
948 f 2=f2+dmax1 ( 0 . d+00, con ineq ( i ) )
949 end do
950 f 6 =0.d+00
951 do i =1, n u m l i n i n e q
952 f 6=f6+dmax1 ( 0 . d+00, c o n l i n i n e q ( i ) )
953 end do
954 f box=f4+f3
955 f 5=f1+f2
956 f c o n s t=f5+fbox+f6
957 IF ( n s h i f t . eq . 1 ) THEN
958 f=f5+f6+fbox
959 f c o n s t =0.d+00
960 END i f
961 IF ( n s h i f t . eq . 2 ) f=o b j f+p e n a l t ∗ ( f 5+fbox+f6 )
962 c======================================================================================
963 r e t u r n
964 end
965 c======================================================================================
966 c This s u b r o u t i n e s o l v e s the system o f l i n e a r e q u a t i o n s and t r a n s f o r m s the s e a r c h space .
967 c======================================================================================
968 s u b r o u t i n e l i n e a r e p
969 PARAMETER( maxvar =2000 , maxcon=2000)
970 i m p l i c i t doub l e p r e c i s i o n ( a−h , o−z )
971 DOUBLE PRECISION c o n l i n e q ( maxcon ) , x ( maxvar ) , x2 ( maxvar )
972 1 , a ( maxcon , maxvar ) , a1 ( maxcon , maxvar ) , c1 ( maxcon , maxvar )
973 2 , coneq ( maxcon ) , con ineq ( maxcon ) , c o n l i n i n e q ( maxcon )
974 INTEGER l 1 ( maxvar ) , l 2 ( maxvar ) , l 3 ( maxvar )
975 COMMON / c c o n l i n e q / numlineq , / c s i z e /m, / c s i z e 1 /m1, / c l 3 / l3 , n2
976 1 , / c l 1 / l1 , / cc1 / c1
977 h=1.d−01
978 do i =1,m
979 x ( i ) =0.d+00
980 end do
981 n=numl ineq
982 do i =1,n
983 do j =1,m+1
984 a ( i , j ) =0.d+00
985 end do
986 end do
987 do i =1,n
988 c a l l f unc ( x , o b j f , c o n l i n e q , c o n l i n i n e q , coneq , con ineq )
989 a ( i ,m+1)=c o n l i n e q ( i )
990 do j =1,m
991 x ( j )=h
992 c a l l f unc ( x , o b j f , c o n l i n e q , c o n l i n i n e q , coneq , con ineq )
993 a ( i , j )=( c o n l i n e q ( i )−a ( i ,m+1) ) /h
994 x ( j ) =0.d+00
995 end do
996 end do
997 do i =1,n
998 do j =1,m+1
999 a1 ( i , j )=a ( i , j )

1000 end do
1001 end do
1002 n1=0
1003 n2=0
1004 do j =1,m
1005 do i =1,n
1006 do k=1,n2



160

1007 IF ( i . eq . l 2 ( k ) ) GO TO 4
1008 end do
1009 IF ( dabs ( a1 ( i , j ) ) . ge . 1 . d−10) GO TO 1
1010 4 end do
1011 n1=n1+1
1012 l 1 ( n1 )=j
1013 GO TO 2
1014 1 n2=n2+1
1015 l 2 ( n2 )=i
1016 l 3 ( n2 )=j
1017 n c u r r e n t=i
1018 r=a1 ( ncu r r en t , j )
1019 do k1=1,m+1
1020 a1 ( ncu r r en t , k1 )=a1 ( ncu r r en t , k1 ) / r
1021 end do
1022 dpen0 =0.d+00
1023 do k1=1,m+1
1024 c1 ( n2 , k1 )=−a1 ( ncu r r en t , k1 )
1025 end do
1026 c1 ( n2 , j ) =0.d+00
1027 do i =1,n
1028 do k1=1,n2
1029 IF ( i . eq . l 2 ( k1 ) ) GO TO 5
1030 end do
1031 b1=a1 ( i , j )
1032 do k1=1,m+1
1033 a1 ( i , k1 )=a1 ( i , k1 )−b1∗a1 ( ncu r r en t , k1 )
1034 end do
1035 5 end do
1036 2 end do
1037 m1=m
1038 m=n1
1039 r e t u r n
1040 end
1041 c======================================================================================
1042 c# This s u b r o u t i n e makes r e v e r s e t r a n s f o r m a t i o n r e t u r n i n g p o i n t s to the o r i g i n a l space .
1043 c======================================================================================
1044 s u b r o u t i n e r e s t o r e p o i n t ( x1 , x )
1045 i m p l i c i t doub l e p r e c i s i o n ( a−h , o−z )
1046 PARAMETER( maxvar =2000 , maxcon=2000 , maxdg=1000)
1047 doub l e p r e c i s i o n x ( maxvar ) , x1 ( maxvar ) , c1 ( maxcon , maxvar )
1048 INTEGER l 1 ( maxvar ) , l 3 ( maxvar )
1049 common / c s i z e /m, / c l 3 / l3 , n2 , / c l 1 / l1 , / c s i z e 1 /m1, / cc1 / c1
1050 do i =1,m
1051 x ( l 1 ( i ) )=x1 ( i )
1052 end do
1053 do i=n2 ,1 ,−1
1054 x ( l 3 ( i ) )=c1 ( i ,m1+1)
1055 do j =1,m1
1056 x ( l 3 ( i ) )=x ( l 3 ( i ) )+c1 ( i , j ) ∗x ( j )
1057 end do
1058 end do
1059 r e t u r n
1060 end
1061 c=============================================================================
1062 c# This s u b r o u t i n e i d e n t i f i e s v a r i a b l e s w i th box c o n s t r a i n t s
1063 c=============================================================================
1064 s u b r o u t i n e v a r i n d
1065 i m p l i c i t doub l e p r e c i s i o n ( a−h , o−z )
1066 PARAMETER( maxvar =2000)
1067 doub l e p r e c i s i o n xlow ( maxvar ) , xup ( maxvar )
1068 INTEGER ind low ( maxvar ) , indup ( maxvar )
1069 COMMON / c s i z e 1 /m, / cbound / xlow , xup , / c i n d i c a t o r / ind low , indup
1070 1 , / c indbound / indbound
1071 do i =1,m
1072 IF ( x low ( i ) . LT.−1. d+05) ind l ow ( i )=1
1073 IF ( x low ( i ) . GE.−1. d+05) ind l ow ( i )=0
1074 IF ( xup ( i ) . gt . 1 . d+05) indup ( i )=1
1075 IF ( xup ( i ) . l e . 1 . d+05) indup ( i )=0
1076 end do
1077 indbound=1
1078 do i =1,m
1079 IF ( ( i nd l ow ( i ) . eq . 0 ) . o r . ( indup ( i ) . eq . 0 ) ) THEN
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1080 indbound=0
1081 GO TO 1
1082 END i f
1083 end do
1084 1 RETURN
1085 END
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Appendix C: Lasso/glmnet source R-code.

Method №2: Computation of LASSO penalisation with nfold=10 for Marvin blasthole
data, packages: mvtnorm,glmnet,matrix,foreach.

14
15
16 rm( l i s t =l s ( a l l=TRUE) ) # c l e a n a l l data
17 #i n s t a l l . packages (" mvtnorm ") # i n s t a l l packages
18 #i n s t a l l . packages (" g lmnet " ) # i f n e c e s s a r y
19 r e q u i r e ( mvtnorm ) # l o a d packages
20 r e q u i r e ( g lmnet )
21 ############################################################################
22 # s e t your work ing d i r e c t o r y
23 setwd ( "/ I g o r / data / windows /Documents/ Codes / Rcodes /" )
24 #
25 s e t . s eed (123)
26 ############################################################################
27 dat<−r ead . t a b l e ( " Marvin1 . c sv " ) # l o a d data from f i l e
28 dat<−mat r i x ( data=dat $V1 , n c o l =7, byrow=TRUE) # p r o c e s s data
29 dat<−mat r i x ( data=as . numer ic ( dat [ , −1]) , n c o l =6, byrow=FALSE)
30 dat<−dat [ , −3]
31 co lnames ( dat )<−( c ( " x " , " y " , " z1 " , " z2 " , " au " ) ) # the o b s e r v a t i o n s c o n s i s t o f
32 # x , y , z1 b e g i n n i n g o f segment
33 # x , y , z2 end o f segment
34 # au go ld c o n c e n t r a t i o n
35 ############################################################################
36 r e s p<−dat [ , 5 ] # take go ld c o n c e n t r a t i o n as r e s p o n s e v a r i a b l e
37 obs<−dat [ , 1 : 4 ]
38 ############################################################################
39 c e n t e r s<−mat r i x ( data =0, nrow =700 , n c o l =3) # data f o r o r e b o d i e s
40 # f i r s t t h r e e columns f o r mean
41 # o t h e r n i n e f o r v a r i a n c e mat r i x
42 s igmas<−r ep (1 , nrow ( c e n t e r s ) )
43 ############################################################################
44 # c r e a t e p o t e n t i a l o r e b o d i e s randomly
45 ############################################################################
46 c e n t e r s [ , 1 ]<− r u n i f ( n=nrow ( c e n t e r s ) , min=min ( obs [ , 1 ] ) , max=max( obs [ , 1 ] ) )
47 c e n t e r s [ , 2 ]<− r u n i f ( n=nrow ( c e n t e r s ) , min=min ( obs [ , 2 ] ) , max=max( obs [ , 2 ] ) )
48 c e n t e r s [ , 3 ]<− r u n i f ( n=nrow ( c e n t e r s ) , min=min ( obs [ , 3 : 4 ] ) , max=max( obs [ , 3 : 4 ] ) )
49 #
50 s igmas<− r u n i f ( n=l e n g t h ( s igmas ) , min=3, max=3)
51 #
52 ############################################################################
53 make_model_mat r i x<−f u n c t i o n ( obs , c e n t e r s , s igmas )
54 {
55 ############################################################################
56 # c r e a t e model ma t r i x
57 ############################################################################
58 # each segment c o n t a i n s go ld c o n c e n t r a t i o n d e r i v e d from random normal
59 # d e n s i t y o r i g i n a t e d from ore body
60 # rows s tand f o r o b s e r v a t i o n s ( go ld c o n c e n t r a t i o n i n segments )
61 # columns s tand f o r o r e b o d i e s
62 # e x p l a n a t o r y c o e f f i c i e n t a r e oba ined from d e n s i t y i n t e g r a l a l ong each segment
63 # which i s c a l c u l a t e d by t r a p e z o i d a l r u l e
64 ############################################################################
65 mod_mat<−mat r i x ( data =0, nrow=nrow ( obs ) , n c o l=nrow ( c e n t e r s ) )
66 f o r ( j i n 1 : n c o l (mod_mat ) ) {
67 c e n t e r<−mat r i x ( c e n t e r s [ j , 1 : 3 ] , byrow=TRUE, nrow=nrow ( obs ) , n c o l =3)
68 p1<−obs [ , c ( 1 , 2 , 3 ) ]− c e n t e r
69 p2<−obs [ , c ( 1 , 2 , 4 ) ]− c e n t e r
70 mod_mat [ , j ]<−( app l y (FUN=dmvnorm , X=p1 ,MARGIN=1, s igma=d i a g ( nrow=3, n c o l =3,x=s igmas [ j ] ^ 2 ) )+
71 app l y (FUN=dmvnorm , X=p2 , MARGIN = 1 , s igma=d i a g ( nrow=3, n c o l =3, x=s igmas [ j ] ^ 2 ) ) ) /2
72 }
73 r e t u r n (mod_mat )



163

74 }
75 #
76 l i b r a r y ( g lmnet ) # l o a d l i b r a r y
77 #
78 #∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
79 # BEGIN RUN THIS SEVERAL TIMES
80 #∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
81 #
82 max_ i t e r<−7
83 #
84 f o r ( k i n 1 : max_ i t e r ) {
85 i f ( k>1)
86 {
87 s igmas<−s igmas_new
88 c e n t e r s<−c e n t e r s_new
89
90 i f ( k<max_ i t e r −3) {
91
92 s igmas<−c ( s igmas , s igmas ∗ r u n i f ( n=l e n g t h ( s igmas ) , min =0.9 , max=1.1) )
93
94 c e n t e r s<−r b i n d ( c e n t e r s , c e n t e r s+ cb ind (
95 r u n i f ( n=nrow ( c e n t e r s ) , min=−1, max=1) ,
96 r u n i f ( n=nrow ( c e n t e r s ) , min=−1, max=1) ,
97 r u n i f ( n=nrow ( c e n t e r s ) , min=−1, max=1)
98 )
99 )

100 }
101 }
102 ###########################################################################
103 #
104 # Create model mat r i x
105 #
106 ###########################################################################
107 model_mat<−make_model_ma t r i x ( obs=obs , c e n t e r s=c e n t e r s , s igmas=s igmas )
108 ###########################################################################
109 #
110 # Make e x p l a n a t o r y ma t r i x
111 #
112 ###########################################################################
113 EXPL<−cb ind (1 , model_mat ) # d e f i n e model ma t r i x
114 co lnames (EXPL)<−c ( " i 0 " , p a s t e ( "C" , r ep ( 1 : n c o l ( model_mat ) ) , sep=" " ) )
115 i n d e x<−1 : n c o l (EXPL)−1
116 names ( i n d e x )<−co lnames (EXPL)
117 ###########################################################################
118 #
119 # Make glm f i t
120 #
121 ###########################################################################
122 #
123 c v o b j<−cv . g lmnet ( x=EXPL , y=resp , i n t e r c e p t=FALSE) # t r y w i th g a u s s i a n model
124 ###########################################################################
125 #
126 # E x t r a c t non−z e r o c o e f f i c i e n t s
127 #
128 ###########################################################################
129 co<−c o e f ( c v o b j ) # most o f the c o e f f i c i e n t s a r e z e r o
130 non_z e r o<−which ( co !=0)
131 non_z e r o_names<−names ( co [ non_zero , ] )
132 data_i n d e x<−i n d e x [ non_z e r o_names ]
133 s igmas_new<−s igmas [ data_i n d e x ]
134 c e n t e r s_new<−c e n t e r s [ data_index , ]
135 ###########################################################################
136 p l o t ( c e n t e r s_new [ , 1 ] , c e n t e r s_new [ , 2 ] )
137 p r i n t ( s igmas_new )
138 p r i n t ( non_z e r o_names )
139 ###########################################################################
140 # Watch the an imat i on run
141 ###########################################################################
142 }
143 b e t a s<−co [ names ( co [ , 1 ] ) !=" ( I n t e r c e p t ) " , 1 ]
144
145 z l e v e l s<−seq ( from=min ( dat [ , 3 ] ) , to=max( dat [ , 3 ] ) , l e n g t h =5)
146 r e s_dim1<−40
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147 r e s_dim2<−40
148
149 x g r i d<−seq ( from=min ( dat [ , 1 ] ) , to=max( dat [ , 1 ] ) , l e n g t h=r e s_dim1 )
150 y g r i d<−seq ( from=min ( dat [ , 2 ] ) , to=max( dat [ , 2 ] ) , l e n g t h=r e s_dim2 )
151
152 f o r ( i i n 1 : l e n g t h ( z l e v e l s ) )
153 {
154 L<−cb ind ( expand . g r i d (X=x g r i d , Y=y g r i d ) , z l e v e l s [ 2 ] , z l e v e l s [ i ] )
155 M<−cb ind (1 , make_model_m at r i x ( obs=L , c e n t e r s=c e n t e r s , s igmas=s igmas ) )
156
157 z g r i d<−mat r i x ( nrow=r e s_dim1 , n c o l=r e s_dim2 , data=M%∗%betas , byrow=FALSE)
158
159 pdf ( p a s t e ( "/ I g o r / data / windows /Documents/ Codes / Rcodes /
160 " , i , " . pdf " , sep=" " ) , w idth =7, h e i g h t =5, paper=’ s p e c i a l ’ )
161 f i l l e d . con tou r ( x = x g r i d , y = y g r i d ,
162 z = z g r i d , c o l o r . p a l e t t e = t e r r a i n . c o l o r s ,
163 p l o t . t i t l e = t i t l e ( main =p a s t e ( " go ld c o n c e n t r a t i o n at depth " , z l e v e l s [ i ] , "m" ) ,
164 x l a b = " mete r s x−d i r e c t i o n " , y l a b = " meter s y−d i r e c t i o n " ) ,
165 key . t i t l e = t i t l e ( main=" go ld \n g/m3" ) ,
166 key . axe s = a x i s (4 , round ( seq ( from=min ( z g r i d ) , to=max( z g r i d ) , l e n g t h =20) ,
167
168 d i g i t s = 2) )
169 )
170 dev . o f f ( )
171
172 f i l l e d . con tou r ( x = x g r i d , y = y g r i d ,
173 z = z g r i d , c o l o r . p a l e t t e = t e r r a i n . c o l o r s ,
174 p l o t . t i t l e = t i t l e ( main = p a s t e ( " P r e d i c t e d AU g / m3 depth=" ,
175 z l e v e l s [ i ] , " met res " , cex . main=" " ) ,
176 x l a b = "EAST" , y l a b = "NORTH" ) ,
177 key . t i t l e = t i t l e ( main="g/m3" ) ,
178 key . axe s = a x i s (4 , round ( seq ( from=min ( z g r i d ) ,
179 to=max( z g r i d ) , l e n g t h =20) , d i g i t s = 2) )
180 )
181 }
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Appendix D: Matrices of polar Kernel densities

Comparison of matrices before conversion into polar Kernels.
1. Matrix 1 is a comparison of Prototype P5 (5 hyperplanes) versus Prototype P10A

(after adding 5 more hyperplanes to existing 5).
2. Matrix 2 is a comparison of Prototype P7 (7 hyperplanes) versus Prototype P10A

(after adding 3 more hyperplanes to existing 7).
The results indicate that the compared pairs do not have a significant change in the

shape of their matrices. The effect of adding extra hyperplanes is insignificant.
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Appendix E: Output format of prediction

The below is an extract of output file obtained from Method 1. File contains information
on each segment, Cartesian coordinates, spatial orientation and the length of each sample
interval.

Segm x y Azim◦ Dip◦ from (m) to (m) Predict Interval (m)
6 503549.22 2113865.32 318.10 -58.40 210.00 210.80 0.10 0.80

503549.22 2113865.32 318.10 -58.40 210.80 211.40 0.00 0.60
503549.22 2113865.32 318.10 -58.40 211.40 212.00 0.10 0.60
503549.22 2113865.32 318.10 -58.40 212.00 222.00 0.66 10.00
503549.22 2113865.32 318.10 -58.40 222.00 223.00 0.00 1.00
503549.22 2113865.32 318.10 -58.40 223.00 224.00 0.00 1.00

7 503549.22 2113865.32 317.60 -58.10 225.00 226.00 0.00 1.00
503549.22 2113865.32 317.60 -58.10 226.00 226.60 0.10 0.60
503549.22 2113865.32 317.60 -58.10 226.60 227.20 0.10 0.60
503549.22 2113865.32 317.60 -58.10 227.20 228.30 0.10 1.10
503549.22 2113865.32 317.60 -58.10 228.30 229.15 0.10 0.85
503549.22 2113865.32 317.60 -58.10 229.15 230.00 0.10 0.85
503549.22 2113865.32 317.60 -58.10 230.00 231.00 0.90 1.00
503549.22 2113865.32 317.60 -58.10 231.00 232.00 0.11 1.00
503549.22 2113865.32 317.60 -58.10 232.00 233.00 0.11 1.00
503549.22 2113865.32 317.60 -58.10 233.00 253.40 0.00 20.40

15 503549.22 2113865.32 318.90 -57.00 345.00 346.00 0.15 1.00
503549.22 2113865.32 318.90 -57.00 346.00 347.00 0.15 1.00
503549.22 2113865.32 318.90 -57.00 347.00 348.00 1.31 1.00
503549.22 2113865.32 318.90 -57.00 348.00 348.70 0.15 0.70
503549.22 2113865.32 318.90 -57.00 348.70 349.30 1.31 0.60
503549.22 2113865.32 318.90 -57.00 349.30 350.00 0.15 0.70
503549.22 2113865.32 318.90 -57.00 350.00 351.00 0.15 1.00
503549.22 2113865.32 318.90 -57.00 351.00 352.00 0.15 1.00
503549.22 2113865.32 318.90 -57.00 352.00 353.00 1.27 1.00
503549.22 2113865.32 318.90 -57.00 353.00 354.00 1.26 1.00
503549.22 2113865.32 318.90 -57.00 354.00 355.00 0.16 1.00
503549.22 2113865.32 318.90 -57.00 355.00 356.00 0.16 1.00
503549.22 2113865.32 318.90 -57.00 356.00 357.00 0.16 1.00
503549.22 2113865.32 318.90 -57.00 357.00 358.00 0.16 1.00
503549.22 2113865.32 318.90 -57.00 358.00 358.40 0.16 0.40

33 503549.22 2113865.32 318.10 -58.40 210.00 210.50 0.10 0.50
503549.22 2113865.32 318.10 -58.40 210.50 211.00 0.10 0.50
503549.22 2113865.32 318.10 -58.40 211.00 211.50 0.10 0.50
503549.22 2113865.32 318.10 -58.40 211.50 212.00 0.10 0.50
503549.22 2113865.32 318.10 -58.40 212.00 212.50 0.10 0.50
503549.22 2113865.32 318.10 -58.40 212.50 213.00 0.10 0.50
503549.22 2113865.32 318.10 -58.40 213.00 213.50 0.10 0.50
503549.22 2113865.32 318.10 -58.40 213.50 214.00 0.92 0.50
503549.22 2113865.32 318.10 -58.40 214.00 214.50 0.10 0.50
503549.22 2113865.32 318.10 -58.40 214.50 215.00 0.10 0.50
503549.22 2113865.32 318.10 -58.40 215.00 227.00 0.00 12.00
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