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QUANTITATIVE STABILITY OF LINEAR INFINITE
INEQUALITY SYSTEMS UNDER BLOCK PERTURBATIONS

WITH APPLICATIONS TO CONVEX SYSTEMS1

M. J. CÁNOVAS2, M. A. LÓPEZ3, B. S. MORDUKHOVICH4 and
J. PARRA2

Abstract. The original motivation for this paper was to provide an efficient

quantitative analysis of convex infinite (or semi-infinite) inequality systems whose de-

cision variables run over general infinite-dimensional (resp. finite-dimensional) Banach

spaces and that are indexed by an arbitrary fixed set J . Parameter perturbations

on the right-hand side of the inequalities are required to be merely bounded, and

thus the natural parameter space is l∞(J). Our basic strategy consists of linearizing

the parameterized convex system via splitting convex inequalities into linear ones by

using the Fenchel-Legendre conjugate. This approach yields that arbitrary bounded

right-hand side perturbations of the convex system turn on constant-by-blocks pertur-

bations in the linearized system. Based on advanced variational analysis, we derive

a precise formula for computing the exact Lipschitzian bound of the feasible solution

map of block-perturbed linear systems, which involves only the system’s data, and then

show that this exact bound agrees with the coderivative norm of the aforementioned

mapping. In this way we extend to the convex setting the results of [3] developed

for arbitrary perturbations with no block structure in the linear framework under the

boundedness assumption on the system’s coefficients. The latter boundedness assump-

tion is removed in this paper when the decision space is reflexive. The last section

provides the aimed application to the convex case.

Key words. semi-infinite and infinite programming, parametric optimization,

variational analysis, convex infinite inequality systems, quantitative stability, Lips-

chitzian bounds, generalized differentiation, coderivatives, block perturbations
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1 Introduction

This paper arose motivated by the extension to convex inequality systems of
some results from [3] concerning quantitative/Lipschitz stability of feasible so-
lutions to linear infinite and semi-infinite systems. The basic idea was to use
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the so-called standard linearization by means of the Fenchel-Legendre conju-

gate. This linearization approach entails that each convex inequality is split
into a generally infinite system of linear inequalities; so that a right-hand side
perturbation of each convex inequality yields the same perturbation for all the
linear inequalities coming from splitting the convex one. In this way, we are
dealing with a linear inequality system subject to block perturbations. Based on
this initial motivation we firstly analyze in a general framework the Lipschitz
stability of linear systems under arbitrary block perturbations.

Indeed, the methodology of block perturbations for linear systems and their
applications to convex inequalities has been previously developed in [7] to com-
pute the distance to ill-posedness for such systems, although now the parameter
spaces associated with block partitions are different from those in [7]. Going a
bit further back, extreme cases of constant perturbations are implicitly present
along some proofs in [1, 6]. This observation on the prominent role of constant
perturbations is also pointed out in the very recent preprint [15] that provides
an alternative methodology to approach directly convex systems, where the
concept of perfect regularity plays a central role.

The expression obtained in the present paper for the exact Lipschitzian bound

(also called Lipschitz modulus; see the definition below) of the feasible set map-
ping provides a natural extension of its linear counterpart [3, Theorem 4.6]; cf.
also [1, Corollary 3.2] and [2, Theorem 1]). In this sense, the methodology and
proofs themselves can be treated as major contributions of this paper. Specif-
ically we emphasize, aside from the methodology, the usage of tools such as
coderivatives and the extended Ascoli formula of Lemma 3.

Consider the linear inequality system

{
〈a∗t , x〉 ≤ bt, t ∈ T

}
(1)

referred to as the nominal system, where T is an arbitrary index set, x ∈ X
is a decision variable from a general Banach space X with its topological dual
X∗, and where the function T ∋ t 7→ (a∗t , bt) ∈ X∗ × R providing the nominal
system’s data is also arbitrary. When T is infinite and X is finite-dimensional,
we are dealing with semi-infinite systems whereas infinite systems allow for
both infinitely many inequalities and infinite-dimensional decision spaces. Our
approach involves considering a partition of the index set T denoted by

J := {Tj | j ∈ J} ,

i.e., Tj 6= ∅ for all j ∈ J and

T =
⋃

j∈J

Tj with Ti ∩ Tj = ∅ if i 6= j.

In the sequel the sets Tj, j ∈ J, in the partition are referred to as blocks. Then
we consider the parameterized system

σJ (p) :=
{
〈a∗t , x〉 ≤ bt + pj, t ∈ Tj , j ∈ J

}
, (2)
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where the perturbation parameter p = (pj)j∈J
ranges on the Banach space l∞(J)

endowed with the norm
‖p‖ := sup

j∈J

|pj| .

The zero function p = 0 is regarded as the nominal parameter, which corresponds
to the nominal system (1), which coincides with σJ (0) for every partition J .
From now on, in order to simplify the notation, the nominal system (1) is
denoted just by σ (0). The two extreme partitions are

Jmin := {T } and Jmax :=
{
{t}

∣∣ t ∈ T
}

(3)

called hereafter theminimum partition and themaximum partition, respectively.

The major goal of the paper is to analyze quantitative stability of the feasible
set of the linear infinite inequality system (1) under small block perturbations

of the right-hand side. In more detail, we focus on characterizing Lipschitzian

behavior of the feasible solution map with computing the exact bound of Lips-
chitzian moduli by using appropriate tools of advanced variational analysis and
generalized differentiation particularly based on coderivatives. The results ob-
tained for (1) are then applied to infinite convex inequalities by means of their
Fenchel-Legendre conjugate linearization.

If no confusion arises, we use the same notation ‖ · ‖ for the given norm in
X and for the corresponding dual norm in X∗ defined by

‖x∗‖ := sup
‖x‖≤1

〈x∗, x〉 for any x∗ ∈ X∗,

where 〈x∗, x〉 stands for the standard canonical pairing. Our main attention is
focused on the feasible solution map FJ : l∞(J) ⇒ X defined by

FJ (p) :=
{
x ∈ X

∣∣ x is a solution to σJ (p)
}
. (4)

The rest of the paper is organized as follows: Section 2 presents some basic
definitions and key results from variational analysis and generalized differentia-
tion needed in the sequel. In Section 3 we establish verifiable characterizations of
the Lipschitz-like property of the block-perturbed feasible solution map (4) with
precise computing the exact Lipschitzian bound in terms of the initial data of
(1). For this computation we assume either that {a∗t , t ∈ T } is bounded in X∗,
as in [3], or that the Banach space X of decision variables is reflexive. Section 4
presents an application of the results obtained for linear systems with block
perturbations to quantitative stability analysis of feasible solutions to convex
inequality systems through their conjugate linearization.

Our notation is basically standard in the areas of variational analysis and
semi-infinite/infinite programming; see, e.g., [11, 18]. Unless otherwise stated,
all the spaces under consideration are Banach. The symbol w∗ signifies the
weak∗ topology of a dual space, and thus the weak∗ topological limit corresponds
to the weak∗ convergence of nets. Some particular notation will be recalled, if
necessary, in the places where it is introduced.
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2 Preliminaries and First Stability Results

Given a set-valued mapping F : Z ⇒ Y between Banach spaces Z and Y , we
say the F is Lipschitz-like around (z̄, ȳ) ∈ gphF , the graph of F , with modulus

ℓ ≥ 0 if there are neighborhoods U of z̄ and V of ȳ such that

F (z) ∩ V ⊂ F (u) + ℓ‖z − u‖BY for any z, u ∈ U, (5)

where BY stands for the closed unit ball in Y . The infimum of moduli {ℓ} over
all the combinations of {ℓ, U, V } satisfying (5) is called the exact Lipschitzian

bound of F around (z̄, ȳ) and is labeled as lipF (z̄, ȳ).
If V = Y in (5), this relationship signifies the classical (Hausdorff) local

Lipschitzian property of F around z̄ with the exact Lipschitzian bound denoted
by lipF (z̄) in this case.

It is worth mentioning that the Lipschitz-like property (also known as the
Aubin or pseudo-Lipschitz property) of an arbitrary mapping F : Z ⇒ Y be-
tween Banach spaces is equivalent to other two fundamental properties in non-
linear analysis while defined for the inverse mapping F−1 : Y ⇒ Z; namely,
to the metric regularity of F−1 and to the linear openness of F−1 around
(ȳ, z̄), with the corresponding relationships between their exact bounds (see,
e.g. [13, 18, 19]). From these relationships we can easily observe the following
representation for the exact Lipschitzian bound:

lipF (z̄, ȳ) = lim sup
(z,y)→(z̄,ȳ)

dist
(
y;F (z)

)

dist
(
z;F−1(y)

) , (6)

where inf ∅ := ∞ (and hence dist(x; ∅) = ∞) as usual, and where 0/0 := 0. We
have accordingly that lipF (z̄, ȳ) = ∞ if F is not Lipschitz-like around (z̄, ȳ).

A remarkable fact consists of the possibility to characterize pointwisely the
(derivative-free) Lipschitz-like property of F around (z̄, ȳ)—and hence its local
Lipschitzian, metric regularity, and linear openness counterparts—in terms of
a dual-space construction of generalized differentiation called the coderivative

of F at (z̄, ȳ) ∈ gphF . The latter is a positively homogeneous multifunction
D∗F (z̄, ȳ) : Y ∗

⇒ Z∗ defined by

D∗F (z̄, ȳ)(y∗) :=
{
z∗ ∈ Z∗

∣∣ (z∗,−y∗) ∈ N
(
(z̄, ȳ); gphF

)}
, y∗ ∈ Y ∗, (7)

where N(·; Ω) stands for the collection of generalized normals to a set at a
given point known as the basic, or limiting, or Mordukhovich normal cone; see,
e.g. [16, 18, 19, 20] and references therein. When both Z and Y are finite-
dimensional, it is proved in [17] (cf. also [19, Theorem 9.40]) that a closed-graph
mapping F : Z ⇒ Y is Lipschitz-like around (z̄, ȳ) ∈ gphF if and only if

D∗F (z̄, ȳ)(0) = {0}, (8)

and the exact Lipschitzian bound of moduli {ℓ} in (5) is computed by

lipF (z̄, ȳ) = ‖D∗F (z̄, ȳ)‖ := sup
{
‖z∗‖

∣∣ z∗ ∈ D∗F (z̄, ȳ)(y∗), ‖y∗‖ ≤ 1
}
. (9)
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There is an extension [18, Theorem 4.10] of the coderivative criterion (8), via
the so-called mixed coderivative of F at (z̄, ȳ), to the case when both spaces Z
and Y are Asplund (i.e., their separable subspaces have separable duals) under
some additional “partial normal compactness” assumption that is automatic
in finite dimensions. Also the aforementioned theorem contains an extension
of the exact bound formula (9) provided that Y is Asplund while Z is finite-
dimensional. Unfortunately, none of these results is applied in our setting (4)
when J is infinite; the latter is our standing assumption needed, in particular,
for applications to convex infinite systems developed in Section 4.

Nevertheless we show in this paper that both (8) and (9) remain valid for
FJ : l∞(J) ⇒ X in (4) defined by the block-perturbed infinite system of linear
inequalities (2). The graph gphFJ of this mapping is obviously convex, and
we can easily verify that it is also closed with respect to the product topology.
If the partition index set J is infinite, l∞(J) is an infinite-dimensional Banach
space, which is never Asplund. It is well known from functional analysis (see,
e.g., [10]) that there exists an isometric isomorphism between the topological
dual l∞(J)∗ and the space ba(J) of additive and bounded measures on 2J .

Given a subset S of a normed space, the notation coS and coneS stand
for the convex hull and the conic convex hull of S, respectively. The symbol

R+ signifies the interval [0,∞), and by R
(J)
+ we denote the collection of all the

functions λ = (λj)j∈J
∈ R

J
+ such that λj > 0 for only finitely many j ∈ J . As

usual, cl∗S stands for the weak∗ (w∗ in brief) topological closure of S.
Following the lines in [3, Theorem 3.2] and appealing to the extended Farkas

Lemma (see [3, Lemma 2.1] and references therein), we have the following char-
acterization of D∗FJ (0, x), where we use the notation δj for the classical Dirac

measure at j ∈ J given by

〈δj , p〉 := pj for p = (pj)j∈J
∈ l∞ (J) .

Proposition 1 (computing coderivatives for linear systems). Consider

any x ∈ FJ (0) for the mapping FJ : l∞(J) ⇒ X defined by (4). Then we have

p∗ ∈ D∗FJ (0, x) (x∗) if and only if

(p∗,−x∗,−〈x∗, x〉) ∈ cl∗cone
{
(−δj , a

∗
t , bt)

∣∣ j ∈ J, t ∈ Tj

}
.

Let us now define the characteristic set

CJ (p) := co {(a∗t , bt + pj) , t ∈ Tj, j ∈ J} ⊂ X∗ × R (10)

for p ∈ l∞(J). Observe that CJ (0) actually does not depend on J but just on
the nominal system (1). For this reason, we denote in what follows the CJ (0)
simply by C (0) , i.e.,

C (0) := co
{
(a∗t , bt) , t ∈ T

}
.
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We say that the system σ (0) in (1) satisfies the strong Slater condition (SSC)
if there exists a point x̂ ∈ X such that

sup
t∈T

[〈a∗t , x̂〉 − bt] < 0.

In this case x̂ is called a strong Slater point (SS point in brief) for σ (0).

Lemma 2 (equivalent descriptions of the Lipschitz-like property). As-

sume that x ∈ FJ (0). The following statements are equivalent:

(i) FJ is Lipschitz-like around (0, x);
(ii) D∗FJ (0, x̄)(0) = {0};
(iii) σ (0) satisfies the SSC;
(iv) 0 ∈ int(domFJ );
(v) FJ is Lipschitz-like around (0, x) for all x ∈ FJ (0) ;
(vi) (0, 0) /∈ cl ∗C (0) .

Proof. (i)⇒(ii) is a consequence of [18, Theorem 1.44] established for gen-
eral set-valued mappings of closed graph between Banach spaces. The proof of
(ii)⇒(i) follows the lines in the proof of [3, Theorem 4.1].

In the case of the maximum partition as in (3) the equivalence between (iii)
and (vi) may be found in, e.g., [12, Theorem 3.1]; see also [11, Theorem 6.1].
Since (iii) and (vi) are not of parametric nature (i.e., their definitions involve
just the nominal system, independently of the partition under consideration),
the equivalence between them holds true. Moreover, equivalence (iii)⇐⇒(iv)
for the maximum partition trivially entails that (iii)=⇒(iv) for the arbitrary
partition J , since block perturbations are a particular case of arbitrary pertur-
bations. The reverse implication (iv)=⇒(iii) holds by considering a constant
perturbation p ≡ ε for ε > 0 sufficient small to guarantee that p ∈ int(domFJ )
by taking into account that constant perturbations (corresponding to the mini-
mum partition) are trivially a particular case of block perturbations. The equiv-
alences (i)⇐⇒(iv) and (iv)⇐⇒(v) follows from the classical Robinson-Ursescu
theorem. This completes the proof of the lemma

The following technical statement is of its own interest while playing an
essential role in proving the main results presented in the subsequent sections.
We keep the convention 0/0 := 0. Observe that this result is not of parametric
nature (i.e., no concept involving perturbation of p is used).

Lemma 3 (distance to feasible solutions). [3, Lemma 4.3] Assume that

the SSC is satisfied for the system σJ (p) in (2) for p ∈ l∞ (J). Then for any

x ∈ X we have the representation

dist
(
x;FJ (p)

)
= sup

(x∗,α)∈cl∗CJ (p)

[〈x∗, x〉 − α]+
‖x∗‖ . (11)

If furthermore the space X is reflexive, then

dist
(
x;FJ (p)

)
= sup

(x∗,α)∈CJ (p)

[〈x∗, x〉 − α]+
‖x∗‖ . (12)
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Remark 4 According to the extended Farkas Lemma in [3, Lemma 2.1] the
feasibility of σJ (p) ensures that α ≤ 0 whenever (0, α) ∈ cl∗CJ (p) , and then
the convention 0/0 := 0 is applied. Moreover, [3, Example 4.4] shows that the
simplified expression (12) may fail for the nonreflexive Asplund space X = c0
of all sequences converging to zero endowed with the supremum norm.

3 Quantitative Stability of Linear Systems un-

der Block Perturbations

The main result of this section is Theorem 10, where an expression for the
coderivative norm and the exact Lipschitzian bound of the feasible solution set
mapping of block-perturbed linear inequality systems is provided under either
the coefficient boundedness {a∗t , t ∈ T } or the reflexivity of the decision space
X. To accomplish this, we proceed the following chain of technical lemmas.

Recall that FJ : l∞(J) ⇒ X is defined by (4) with an arbitrary Banach
decision space X unless otherwise stated. Moreover, the zero vector or function
in all the spaces under consideration are simply denoted by 0.

Lemma 5 (relationships between exact Lipschitzian bounds of block-
perturbed systems). Let x ∈ FJ (0). Then we have

lipFmin (0, x) ≤ lipFJ (0, x) ≤ lipFmax (0, x)

in the notation of (3).

Proof. Consider the nontrivial case when SSC is satisfied at the nominal sys-
tem σ (0); otherwise all the exact Lipschitzian bounds are ∞ according to the
equivalence (i)⇐⇒(iii) in Lemma 2). Note that the mappings Fmin, FJ , and
Fmax act in the spaces R, l∞(J), and l∞(T ), respectively. For each ρ ∈ R let
pρ be the constant function pρ ≡ ρ on J, and for each p ∈ l∞ (J) denote by pT
the constant by blocks function on T defined as pj on block Tj , j ∈ J. Then the
proof of the lemma relies on the observation that

dist
(
ρ;F−1

min (x)
)
≥ dist

(
pρ;F−1

J (x)
)

and dist
(
p;F−1

J (x)
)
≥ dist

(
pT ;F−1

max (x)
)

for any x ∈ X . In more details, for the first inequality (and similarly for the
second one) observe that F−1

J (x) = ∅ yields F−1
min (x) = ∅. Consider further

the nontrivial case when both sets are nonempty. Thus we get for some sequence
{ρr}r∈N

⊂ F−1
min (x) that

dist
(
ρ;F−1

min (x)
)
= lim

r∈N

|ρ− ρr| = lim
r∈N

‖pρ − pρr
‖ ≥ dist

(
pρ;F−1

J (x)
)

by taking into account that ρr ∈ F−1
min (x) if and only if pρr

∈ F−1
J (x).

Finally, we appeal to the Lipschitzian bound representation (6) combined
with the facts that

Fmin (ρ) = FJ (pρ) and FJ (p) = Fmax (pT ) ,

which thus completes the proof of the lemma.
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Lemma 6 (relationship between coderivative norms for block-perturbed
systems). Take any x ∈ FJ (0) and consider also the mapping Fmin : R ⇒ X.
Then we have the relationship

‖D∗Fmin (0, x)‖ ≤ ‖D∗FJ (0, x)‖ . (13)

Proof. Observe that FJ (0) =Fmin (0) since both sets are nothing else but
the nominal feasible set. Hence x ∈ Fmin (0). According to the coderivative
norm definition in (9), pick arbitrarily x∗ ∈ X∗ with ‖x∗‖ ≤ 1 and consider the
nontrivial case when there exists µ ∈ R\{0} with µ ∈ D∗Fmin (0, x) (x

∗). The
coderivative calculation in Proposition 1 entails the existence of a net {λν}ν∈N

with λν = (λtν)t∈T ∈ R
(T )
+ as ν∈N satisfying

(
µ,−x∗,−〈x∗, x〉

)
= w∗- lim

ν∈N

∑

t∈T

λtν (−1, a∗t , bt) . (14)

Looking at the first coordinates in (14) and setting γν :=
∑

t∈T λtν , we obtain

− µ = lim
ν∈N

γν > 0, (15)

and hence γν > 0 for ν sufficiently advanced in the directed set N ; say for all ν
without loss of generality. This gives us the expression

(
µ−1x∗,

〈
µ−1x∗, x

〉 )
= w∗- lim

ν∈N

∑

t∈T

γ−1
ν λtν (a

∗
t , bt) ∈ cl ∗C (0) . (16)

For each ν ∈ N we consider the net ην = (ηjν )j∈J
∈ R

(J)
+ with ηjν :=∑

t∈Tj
γ−1
ν λtν , which obviously satisfies the condition

∑
j∈J ηjν = 1. Since the

net {∑j∈J ηjν (−δj)}ν∈N is contained in Bl∞(J)∗ , the classical Alaoglu-Bourbaki
theorem ensures that a certain subnet (indexed without relabeling by ν ∈ N )
weak∗ converges to some p∗ ∈ l∞ (J)∗ with ‖p∗‖ ≤ 1. Denoting by e ∈ l∞ (J)
the function whose coordinates are identically one, we get

〈p∗,−e〉 = lim
ν∈N

∑

t∈j

ηjν = 1,

and hence ‖p∗‖ = 1. Appealing now to (16) gives us, for the subnet under
consideration (recalling the definition of ηjν), the equality

(
p∗, µ−1x∗,

〈
µ−1x∗, x

〉)
= w∗- lim

ν∈N

∑

j∈J

∑

t∈Tj

γ−1
ν λtν (−δj, a

∗
t , bt) .

Employing further the coderivative description from Proposition 1 yields

p∗ ∈ D∗FJ (0, x)
(
−µ−1x∗

)
.

Recalling (15), the positive homogeneity of the coderivative ensures

−µp∗ ∈ D∗FJ (0, x) (x∗) ,
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which implies by definition of the coderivative norm in (9) that

‖D∗FJ (0, x)‖ ≥ ‖−µp∗‖ = −µ = |µ| .

Since µ ∈ D∗Fmin (0, x) (x
∗) was chosen arbitrarily, we arrive at (13) and thus

complete the proof of the lemma.

Remark 7 In the sequel we adopt the convention sup∅ := 0, which makes
sense while dealing with nonnegative numbers. Observe that under this conven-
tion we have for a SS point x of σ (0) the equality

sup
{
‖u∗‖−1

∣∣∣
(
u∗, 〈u∗, x〉

)
∈ cl ∗C (0)

}
= 0.

In fact, it is easy to check that for a SS point x of σ (0) there is no element
u∗ ∈ X∗ satisfying

(
u∗, 〈u∗, x〉

)
∈ cl ∗C (0) . Note that the reciprocal is not true

in general. To illustrate it, consider the system σ (0) := {tx ≤ 1/t; t = 1, 2, . . .}
in R. On one hand, observe that x = 0 is not a SS point. On the other hand,
we have {u∗ ∈ R

∣∣ (u∗, 〈u∗, x〉
)
∈ cl ∗C (0)} = ∅.

Remark 8 If SSC fails at σ (0), then Lemma 2 ensures that (0, 0) ∈ cl ∗C (0).
Under the convention 0−1 := ∞ we have in this case that

sup
{
‖u∗‖−1

∣∣∣
(
u∗, 〈u∗, x〉

)
∈ cl ∗C (0)

}
= ∞.

Lemma 9 (lower estimate of the coderivative norm for the minimum
partition). Consider the mapping Fmin : R ⇒ X and pick x ∈ Fmin (0). Then

we have the estimate

sup
{
‖u∗‖−1

∣∣∣
(
u∗, 〈u∗, x〉

)
∈ cl ∗C (0)

}
≤ ‖D∗Fmin (0, x)‖ . (17)

Proof. Let us see first that ‖D∗Fmin (0, x)‖ = ∞ provided that the SSC fails at
σ (0). Indeed, in this case Lemma 2 yields that (0, 0) ∈ cl ∗C (0), which implies

the existence of a net {λν}ν∈N with λν = (λtν)t∈T ∈ R
(T )
+ and

∑
t∈T λtν = 1 as

ν∈N satisfying (
0, 0

)
= w∗- lim

ν∈N

∑

t∈T

λtν (a
∗
t , bt) .

The latter obviously entails that
(
− 1, 0, 0

)
= w∗-limν∈N

∑
t∈T λtν (−1, a∗t , bt) ,

i.e., by Proposition 1 we get

−1 ∈ D∗Fmin (0, x) (0) .

Since D∗Fmin (0, x) is positively homogeneous, the coderivative norm definition
gives us the claimed condition ‖D∗Fmin (0, x)‖ = ∞.

Now we consider the nontrivial case when the SSC holds at σ (0) and the set
of elements u∗ ∈ X∗ with (u∗, 〈u∗, x〉) ∈ cl ∗C (0) is nonempty. Take such an
element u∗. and observe that the fulfillment of the SSC for σ (0) ensures that
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u∗ 6= 0 according to Lemma 2. By the choice of u∗, find a net {λν}ν∈N with

λν = (λtν)t∈T ∈ R
(T )
+ and

∑
t∈T λtν = 1 as ν∈N satisfying

(
u∗, 〈u∗, x〉

)
= w∗- lim

ν∈N

∑

t∈T

λtν (a
∗
t , bt) . (18)

Then (18) can be trivially rewritten as

(
− 1, u∗, 〈u∗, x〉

)
= w∗- lim

ν∈N

∑

t∈T

λtν (−1, a∗t , bt) ,

which implies that −1 ∈ D∗Fmin (0, x) (−u∗) . Hence hence

−‖u∗‖−1 ∈ D∗Fmin (0, x)
(
−‖u∗‖−1

u∗
)
,

which ensures by the definition of the coderivative norm that

‖D∗Fmin (0, x)‖ ≥ ‖u∗‖−1
.

Since u∗ was chosen arbitrarily from those satisfying (u∗, 〈u∗, x〉) ∈ cl ∗C (0), we
arrive at the lower estimate ( 17) for the coderivative norm and thus complete
the proof of this lemma.

Now we are ready to establish the main result of this section.

Theorem 10 (evaluation of coderivative norms for block-perturbed
systems). For any x ∈ FJ (0) we have the relationships

sup
{
‖u∗‖−1

∣∣∣
(
u∗, 〈u∗, x〉

)
∈ cl ∗C (0)

}
≤ ‖D∗Fmin (0, x)‖ ≤ ‖D∗FJ (0, x)‖
≤ lipFJ (0, x) ≤ lipFmax (0, x) .

Furthermore, if either the coefficient set {a∗t , t ∈ T } is bounded in X∗ or the

space X is reflexive, then all the above inequalities hold as equalities.

Proof. The lower bound estimate

‖D∗FJ (0, x̄)‖ ≤ lipFJ (0, x̄) (19)

is proved in [18, Theorem 1.44] for general set-valued mappings between Banach
spaces. Now apply (in this order) Lemmas 9, 6, formula (19), and Lemma 5 to
obtain the claimed chain of inequalities.

Consider first the case when the set {a∗t , t ∈ T } is bounded in X∗. Then
applying [3, Theorem 4.6] adapted to the current notation gives us

lipFmax (0, x) ≤ sup
{
‖u∗‖−1

∣∣∣
(
u∗, 〈u∗, x〉

)
∈ cl ∗C (0)

}
(20)

in the nontrivial case when SSC holds at σ (0); Remark 8.
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To finish the proof of this theorem, it remains to establish the same inequal-
ity (20), again in the nontrivial case when the SSC holds at σ (0), under the
assumption that X is reflexive, in which case the classical Mazur theorem al-
lows us to replace the weak∗ closure cl ∗C (0) of the convex set C (0) by its norm
closure clC (0) . Arguing by contradiction to (20), find β > 0 such that

lipFmax (0, x) > β > sup
{
‖u∗‖−1

∣∣∣ (u∗, 〈u∗, x〉) ∈ clC (0)
}
. (21)

According to (6) and the first inequality in (21), there are sequences pr =
(ptr)t∈T → 0 and xr → x along which

dist
(
xr;Fmax(pr)

)
> β dist

(
pr;F−1

max (xr)
)

for all r ∈ N. (22)

By the SSC at σ (0) we have due to Lemma 2 that Fmax (pr) 6= ∅ for r ∈ IN
sufficiently large; say for all r ∈ IN without loss of generality. The imposed SSC
at σ (0) is also equivalent to the inner/lower semicontinuity of Fmax around
p = 0 by [9, Theorem 5.1], which entails that

lim
r→∞

dist
(
xr;Fmax

(
pr
))

= 0. (23)

Moreover, it follows from (22) that the quantity

dist
(
pr;F−1

max (xr)
)

= sup
t∈T

[〈a∗t , xr〉 − bt − ptr]+ (24)

= sup
(x∗,α)∈Cmax(pr)

[〈x∗, xr〉 − α]+

is finite. We may assume without loss of generality that the SSC holds at
σmax (pr) for all r. Then it follows from Lemma 3 that

dist
(
xr;Fmax (pr)

)
= sup

(x∗,α)∈Cmax(pr)

[〈x∗, xr〉 − α]+
‖x∗‖ , r = 1, 2, . . . .

This allows us to find (x∗
r , αr) ∈ Cmax (pr) as r ∈ IN satisfying

0 < dist
(
xr ,Fmax (pr)

)
− 〈x∗

r , xr〉 − αr

‖x∗
r‖

<
1

r
. (25)

Furthermore, by (22) and (24) we can choose (x∗
r , αr) in such a way that

β dist
(
pr;F−1

max (xr)
)
<

〈x∗
r , xr〉 − αr

‖x∗
r‖

≤ dist
(
pr;F−1

max (xr)
)

‖x∗
r‖

. (26)

Since dist(pr;F−1
max (xr)) > 0 (otherwise both members of (22) would be zero),

we deduce from ( 26) that

‖x∗
r‖ <

1

β
for all r = 1, 2, . . . ,

11



and thus, by the weak∗ sequential compactness of the unit ball in duals to
reflexive spaces, select a subsequence

{
x∗
rk

}
k∈N

, which weak∗ converges to some

x∗ ∈ X∗ satisfying ‖x∗‖ ≤ 1/ β. Then we get from (23) and (25) that

lim
k∈N

〈
x∗
rk
, xrk

〉
− αrk∥∥x∗

rk

∥∥ = 0,

which implies in turn that

lim
k∈N

( 〈
x∗
rk
, xrk

〉
− αrk

)
= 0.

Since the sequence {xrk}k∈N
converges in norm to x, the latter implies that

lim
k∈N

αrk = lim
k∈N

〈
x∗
rk
, xrk

〉
= 〈x∗, x〉 .

Taking into account that for each k ∈ N we have
(
x∗
rk
, αrk

)
∈ Cmax (prk), there

exist λrk = (λtrk)t∈T such that λtrk ≥ 0, only finitely many of them are positive,

∑

t∈T

λtrk = 1, and (x∗
rk
, αrk) =

∑

t∈T

λtrk (a
∗
t , bt + ptrk) , k ∈ N.

Combining all the above gives us the relationships

(
x∗, 〈x∗, x〉

)
= w∗- lim

k∈N

(x∗
rk
, αrk)

= w∗- lim
k∈N

∑

t∈T

λtrk (a
∗
t , bt + ptrk)

= w∗- lim
k∈N

∑

t∈T

λtrk (a
∗
t , bt) ∈ clC (0) ,

where the last equality comes from limk→∞ ‖prk‖ = 0. Observe finally that
x∗ 6= 0 because, by Lemma 2, the linear infinite system σ (0) satisfies the SSC.
This allows us to conclude that

sup
{
‖u∗‖−1 ∣∣ (u∗, 〈u∗, x〉

)
∈ clC (0)

}
≥ ‖x∗‖−1 ≥ β,

which contradicts (21) and thus completes the proof of the theorem.

We finish this section with a discussion about some consequences of the
boundedness assumption on the coefficient set {a∗t | t ∈ T } ⊂ X∗. First observe
that this assumption yields that only ε-active indices are relevant in the compu-
tation of the supremum of the previous theorem. The following proposition pro-
vides a useful representation of the characteristic set

{(
u∗, 〈u∗, x〉

)
∈ cl ∗C (0)

}
,

which may be rewritten as {(x,−1)}⊥ ∩ cl∗C (0) , in terms of the sets

Tε (x) :=
{
t ∈ T

∣∣ 〈a∗t , x〉 ≥ bt − ε
}
, ε0.

12



Proposition 11 (limiting representation of the characteristic set). As-

sume that the coefficient set {a∗t | t ∈ T } is bounded in X∗. Then given x ∈
FJ (0), we have the representation

{
(x,−1)

}⊥ ∩ cl ∗C (0) =
⋂

ε>0

cl ∗co
{
(a∗t , bt)

∣∣ t ∈ Tε (x)
}
. (27)

Proof. It follows the lines of justifying Step 1 in the proof of [2, Theorem 1].
Note that both sets in (27) are nonempty if and only if x is not a strong Slater
point for σ (0); see Remark 7.

Observe that in the continuous case considered in [1] (where T is assumed
to be a compact Hausdorff space, X = R

n, and the mapping t 7→ (a∗t , bt) is
continuous on T ) representation (27) reads as

{
(x,−1)

}⊥ ∩ C (0) = co
{
(a∗t , bt)

∣∣ t ∈ T0 (x)
}
.

The following example shows that the statement of Proposition 11 is no

longer valid without the boundedness assumption on {a∗t | t ∈ T } and that in the

exact bound expression of Theorem 10 via sup
{
‖u∗‖−1 ∣∣ (u∗, 〈u∗, x〉

)
∈ cl ∗C (0)

}

the set cl ∗C (0) cannot be replaced by cl∗co {(a∗t , bt) | t ∈ Tε (x)} for some small

ε > 0; i.e., it is not sufficient to consider just ε-active constraints.

Example 12 (coefficient boundedness is essential). Consider the count-
able linear system in R

2:

σ (p) =

{
(−1)

t
tx1 ≤ 1 + pt, t = 1, 2, . . . ,

x1 + x2 ≤ 0 + p0, t = 0

}
.

The reader can easily check that for x = 0 ∈ R
2 and 0 ≤ ε < 1 we have

co
{
(a∗t , bt)

∣∣ t ∈ Tε (x)
}
=

{
(1, 1, 0)

}
and

{
(x,−1)

}⊥ ∩ cl ∗C (0) =
{
(α, 1, 0) , α ∈ R

}

It follows furthermore that

Fmax (p) = {0} × (−∞, p0] whenever ‖p‖ ≤ 1,

which easily implies that lipFmax (0, x) = 1. Observe however that lipFmax (0, x)
cannot be computed through Tε (x) for 0 < ε< 1; in fact

max
{
‖u∗‖−1 ∣∣ (u∗, 〈u∗, x〉) ∈ cl∗co

{
(a∗t , bt)

∣∣ t ∈ Tε (x)
}}

=
1√
2
.

As mentioned above, it is clear that {(x,−1)}⊥ ∩ cl∗C (0) = ∅ when x is a SS
point for σ (0). According to [3, Lemma 3.4], if {a∗t | t ∈ T } is bounded and x

is not a SS point for σ (0), the set {(x,−1)}⊥ ∩ cl∗C (0) is nonempty and w∗-
compact in X∗. If in addition the SSC holds at σ (0) , then the latter set does
not contain the origin and the supremum in Theorem 10 becomes a maximum.
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4 Applications to Convex Systems

In this section we apply the results above to analyze the quantitative stability
of infinite convex inequality systems by using the linearization procedure via
the Fenchel-Legendre conjugate. This procedure splits each convex inequality
into a block of linear ones so that a natural perturbation framework for the
linearized system is a block perturbation setting. In what follows we consider
the parameterized convex inequality system given by

σ(p) :=
{
fj (x) ≤ pj , j ∈ J

}
, (28)

where J is an arbitrary index set, x ∈ X is a decision variable selected from a
general Banach space X with its topological dual X∗, and where the functions
fj : X → R := R ∪ {∞}, j ∈ J , are proper lower semicontinuous (lsc) and
convex. As above, the functional parameter p belongs to the Banach space
l∞(J) and the zero function p = 0 is regarded as the nominal parameter.

Hereafter we denote by F the feasible solution map of ( 28); i.e., F : l∞(J) ⇒
X is defined by

F(p) :=
{
x ∈ X

∣∣ x is a solution to σ(p)
}
. (29)

The convex system σ(p) with p ∈ l∞(J) can be linearized by using the
Fenchel-Legendre conjugate f∗

j : X∗ → R for each function fj given by

f∗
j (u∗) := sup

{
〈u∗, x〉 − fj (x)

∣∣ x ∈ X
}
= sup

{
〈u∗, x〉 − fj (x)

∣∣ x ∈ domfj
}
,

where domfj := {x ∈ X | fj (x) < ∞} is the effective domain of fj . Specifically,
under the current assumptions on each fj its conjugate f∗

j is also a proper lsc
convex function such that

f∗∗
j = fj on X with f∗∗

j :=
(
f∗
j

)∗
.

In this way, for each j ∈ J , the inequality fj (x) ≤ pj turns out to be equivalent
to the linear system

{
〈u∗, x〉 − f∗

j (u∗) ≤ pj, u∗ ∈ domf∗
j

}

in the sense that they have the same solution sets.
In order to link to the notation of the previous sections, put

T :=
{
(j, u∗) ∈ J ×X∗ | u∗ ∈ domf∗

j

}

and note that T is partitioned as

T =
⋃

j∈J

Tj, where Tj := {j} × domf∗
j . (30)

In this way the right-hand side perturbations on the nominal convex system
σ(0) correspond to block perturbations of the linearized nominal system σJ (0)
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with the partition J := {Tj | j ∈ J}. It is important to realize to this end that
F and FJ are exactly the same mapping.

Recall that the epigraph of a function h : X → R is defined by

epih :=
{
(x, γ) ∈ X × R

∣∣ x ∈ domh, h(x) ≤ γ
}
.

It is easy to see that the convex counterpart of the set CJ (p) in (10) is

C (p) := co
{(

u∗, f∗
j (u∗) + pj

)
| j ∈ J, u∗ ∈ domf∗

j

}

= co
( ⋃

j∈J

gph (fj − pj)
∗
)
⊂ X∗ × R. (31)

For more details the reader is addressed to [8] and particularly to the extended
Farkas’ Lemma, which may be found in [8, Theorem 4.1].

In this convex setting the SSC at σ (0) reads as supt∈T ft(x̂) < 0 for some
x̂ ∈ X. Note that x̂ is a strong Slater point for σ (0) if and only if the same
happens for the linearized system σJ (0), i.e., sup(j,u∗)∈T {〈u∗, x̂〉−f∗

j (u∗)} < 0.
The next result, which follows from its linear counterpart in Proposition 1,

computes the coderivative of the solution map (29) to the original infinite convex
system (28) in terms of its initial data.

Proposition 13 (computing coderivatives for convex systems). Con-

sider x ∈ F (0) for the solution map (29) to the convex system (28). Then we

have p∗ ∈ D∗F (0, x) (x∗) if and only if

(
p∗,−x∗,−〈x∗, x〉

)
∈ cl∗cone

( ⋃

j∈J

[
{−δj} × gph f∗

j

])
. (32)

The next major result of the paper provides a precise computation of the
exact Lipschitzian bound of the solution map (29) in the case when either the
set

⋃
j∈J dom f∗

j is bounded in X∗ (this is the convex counterpart of the bound-
edness of {a∗t | t ∈ T }) or the decision Banach space X is reflexive. Before this
we show that the boundedness assumption, which looks quite natural in the
linear setting, may fail in very simple convex examples.

Example 14 (failure of the bounded ness assumption for convex sys-
tems). Consider the following single inequality involving one-dimensional de-
cision and parameter variables:

x2 ≤ p for x, p ∈ R. (33)

Note that the linearized system associated with (33) reads as follows:

{
ux ≤ u2

4
+ p, u ∈ R

}
,

and thus the coefficient boundedness assumption fails.
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Theorem 15 (evaluation of the coderivative norm for convex systems).
For any x ∈ F (0) we have the relationships

sup
{
‖u∗‖−1

∣∣∣
(
u∗, 〈u∗, x〉

)
∈ cl ∗co

( ⋃

j∈J

gph fj
∗
)}

≤ ‖D∗F (0, x)‖ ≤ lipF (0, x) .

If furthermore either the set
⋃

j∈J dom f∗
j is bounded in X∗ or the space X is

reflexive, then the above inequalities hold as equalities.

Proof. It follows from Theorem 10 applied to the linearized system with block
perturbations by the linearization procedure and discussions above.

Remark 16 After the publication of [3], Alex Ioffe drew our attention to the
possible connections of some of the results therein with those obtained in [14] for
general set-valued mappings of convex graph. Examining this approach, we were
able to check, in particular, that the result of [3, Corollary 4.7] on the computing
the exact Lipschitzian bound of linear infinite systems via the coderivative norm
under the coefficient boundedness can be obtained by applying Theorem 3 and
Proposition 5 from [14] by involving some technicalities.

Remark 17 The main results of this paper were basically obtained at the end
of 2008 during the visit of the third author to the University of Alicante and
the Miguel Hernández University of Elche and then were presented at several
meetings in 2009-10 and also written in [5]. During the final revision of the
manuscript we have become familiar with the very recent preprint [15] where,
under a certain uniform boundedness condition held by replacing our functionsfj
with max{−1, fj}, the equality in Theorem 15 is obtained with no coefficient
boundedness or reflexivity assumptions by a completely different approach.

Remark 18 Following our approach in [4], the coderivative calculations pre-
sented above allow us to develop necessary optimality conditions of both lower
subdifferential and upper subdifferential types for nonsmooth problems of semi-
infinite and infinite programming with feasible sets given by infinite systems of
convex inequalities; see [5, Section 6] for more details.
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