COPYRIGHT NOTICE

FedUni ResearchOnline
http://researchonline.federation.edu.au

This is the peer-reviewed version of the following article:
Eime, R., Casey, M., Harvey, J., Sawyer, N., Symons, C., Payne, W. (2015)
Socioecological factors potentially associated with participation in physical activity and sport : A longitudinal study of adolescent girls. Journal of Science and Medicine in Sport, 18(6), 684-690.

Which has been published in final form at:
http://doi.org/10.1016/j.jsams.2014.09.012

Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Accepted Manuscript

Title: Socioecological factors potentially associated with participation in physical activity and sport: A longitudinal study of adolescent girls

Author: Rochelle M. Eime Meghan M. Casey Jack T. Harvey
 Neroli A. Sawyer Caroline M. Symons Warren R. Payne

PII:
DOI:
Reference:
To appear in: Journal of Science and Medicine in Sport
Received date: 13-6-2014
Revised date: 10-9-2014
Accepted date: 20-9-2014

Please cite this article as: Eime RM, Casey MM, Harvey JT, Sawyer NA, Symons CM, Payne WR, Socioecological factors potentially associated with participation in physical activity and sport: A longitudinal study of adolescent girls, Journal of Science and Medicine in Sport (2014), http://dx.doi.org/10.1016/j.jsams.2014.09.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

```
Socioecological factors potentially associated with participation in physical activity
and sport: A longitudinal study of adolescent girls
Rochelle M Eime (,2,}\mp@subsup{}{}{1,}\mathrm{ , Meghan M Casey }\mp@subsup{}{}{\mathbf{1}}\mathrm{ , Jack T Harvey }\mp@subsup{}{}{\mathbf{1}}\mathrm{ , Neroli A Sawyer }\mp@subsup{}{}{1,2}\mathrm{ , Caroline M
Symons }\mp@subsup{}{}{2}\mathrm{ , Warren R Payne ' }\mp@subsup{}{}{2
1 Faculty of Health, Federation University, Ballarat, Australia
2 Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia
* Corresponding author
Rochelle Eime
r.eime@federation.edu.au
Word count: }290
Abstract word count: 247
Tables: }
```


Abstract

Objectives: Many adolescents are not physically active enough to receive associated health benefits. Furthermore, participation in physical activity (PA) generally declines during adolescence, and to a greater degree for females. Longitudinal research is required to better understand the determinants of change in PA by adolescent females to inform PA-related policy and practice. This study explored patterns of change in socioecological factors hypothesised to be associated with physical activity and sport, across the adolescent period for females. Methods: This longitudinal study employed three annual surveys of females from metropolitan and non-metropolitan areas recruited in Year $7(n=328)$ and Year 11 ($\mathrm{n}=112$). Self-report measures included questions regarding general barriers to participation, as well as factors relating to the socioecological domains. Results: The barriers where significant changes within or differences between cohorts were observed were mostly intrapersonal (lack of energy, lack of time due to other leisure activities). Lack of time was more prevalent in the Year 11 cohort than in the Year 7 cohort. Perceived importance of life priorities mainly related to education and study and more so for the Year 11 cohort. Perceived competence declined for the Year 7 cohort. Support from family and peers trended downwards in both cohorts, whereas access to facilities increased both within and between cohorts. Conclusions: Significant patterns of change in the determinants of PA participation were observed across the adolescent period. It is important to consider flexible structure and scheduling of PA and strategies to develop competency in childhood and early adolescence.

Keywords: longitudinal, physical activity, determinants, females

Introduction

Females are commonly identified as being less active than males ${ }^{1}$. Furthermore, an Australian study reported that fewer than half of adolescent females are active enough to meet the physical activity (PA) guidelines ${ }^{2}$. The adolescent period is recognised as a difficult and stressful period of life transition. During this time life there are many biological, environmental, social and psychological transformations which influence changes in $\mathrm{PA}^{3,4}$. As a result of the low levels of PA, particularly among adolescent girls, researchers have sought to understand determinants of participation in PA from both quantitative ${ }^{5,6}$ and qualitative ${ }^{4,7,8}$ perspectives.

A systematic review of prospective studies quantifying change in PA in children and adolescents found that the majority of quantitative studies have been conducted in North America among 10-13 year olds ${ }^{5}$. For these children, PA tended to increase over time, and previous PA and self-efficacy were consistently positively associated with this change ${ }^{5}$. For adolescents 14 years and older, smaller declines occurred in PA, with perceived behavioural control, social support and self-efficacy being negatively associated with declines in PA ${ }^{5}$. However, the determinants examined were mostly limited to individual factors which were not investigated across the studies in a consistent manner and not all established correlates could be confirmed longitudinally ${ }^{5}$. Historically, research has focused on individual-level factors and only recently have ecological models been adopted ${ }^{6}$ and evidence encompassing all domains of the ecological model identified in an holistic manner ${ }^{5}$.

The socioecological model was developed to demonstrate multiple levels of influences on health behaviours including intrapersonal, interpersonal, organisational, community and public policy levels ${ }^{9}$. Socioecological models have been applied to qualitative studies to determine the multiple influences on participation in PA among adolescents ${ }^{4,7,10}$. These studies found that environmental factors including proximity, cost,
and access to facilities were important ${ }^{4,7,10}$, especially for youth living in low-socioeconomic areas ${ }^{11}$ or in regional communities ${ }^{4,7}$. Further, intrapersonal factors (i.e. perceived skill and competence), interpersonal factors (i.e. support of friends and adults), and organisational factors (i.e. school and community sport club environment) were also considered important influences on PA participation ${ }^{4,7,10}$.

There have been calls for longitudinal research into determinants of changes in PA in order to achieve a more definitive understanding of why people are active or inactive ${ }^{6}$. Longitudinal studies that examine determinants of PA participation across the socioecological model are needed in order to better inform strategies to foster continued participation in PA throughout adolescence ${ }^{4}$. Importantly, little is known about the changes in determinants of PA during adolescence despite adolescence being recognised as a difficult period of life transition.

This study explored patterns of change in socioecological factors hypothesised to be associated with physical activity and sport, across the adolescent period for females.

Methods

This study is part of a larger study for which the methodological procedure has been previously outlined ${ }^{2}$. Seventeen secondary schools in the metropolitan area of Melbourne, Victoria, Australia and 14 schools in surrounding rural and regional areas participated in the study. Ethical approval was gained from the University Human Research Ethics Committees, the Victorian Department of Education and the Victorian Catholic Education Office.

All female students in Years 7 and 11 from participating schools were invited to participate. There were three longitudinal waves of data collection at 12-month intervals during Autumn of 2008-2010 ${ }^{2}$. Details of the content of the following questions are shown in Tables 1 and 2, and in the Supplementary Table.

In this study, the Australian Sports Commission definition of sport was adopted: "a human activity involving physical exertion and skill as the primary focus of the activity, with
elements of competition where rules and patterns of behaviour governing the activity exist formally through organisations, and is generally recognised as a sport" ${ }^{12}$. More broadly, the contexts of leisure-time physical activity (LTPA) have been classified in terms of modes, settings and types ${ }^{2}$. The four modes of LTPA are: team sport, individual sport, organised but non-competitive PA; and non-organised PA.

Regarding barriers, a list of potential intrapersonal, interpersonal and environmental/organisational barriers to PA participation was derived ${ }^{13,14}$ and participants were asked how likely these issues would arise over the next three months on a 5-point scale. For analysis, the responses were dichotomised to 'yes' (at least moderately likely) or 'no' (no more than slightly likely).

Regarding intrapersonal factors, perceived physical/sports competence was assessed using items from three scales/inventories ${ }^{15-17}$. A 5-point scale was used to maintain consistency with other aspects of the questionnaire, and the terms 'sport' and 'PA' were used to align with the focus of this research. Self-efficacy was assessed in the second and third waves of questionnaires using items on a 5-point scale regarding confidence about participating in PA or sport when conditions were not ideal, adapted from Marcus and Forsyth ${ }^{18}$.

Priority of PA was examined through questions on leisure preference ${ }^{19}$. Life priorities were measured using a scale that was developed for this study which examined the importance of eight types of activity, including PA.

Interpersonal factors such as support from family and friends were measured using items which have demonstrated good reliability ${ }^{20}$. All family and friend items were scored on a 5-point scale. The support score for each domain - family and friends - was the mean score of the set of items, with high scores representing a high level of support from family or friends.

Environmental factors were examined with questions related to an adolescent's ability to access each of 14 types of PA and sport facilities and were based on those used by Sallis et al . ${ }^{14}$. The 14 items were scored on a 4-point ordered scale indicating ease of access to the facility. The access score was the mean score of the 14 items, with high scores representing greater independent access/mobility. Neighbourhood socio-economic status (SES) was represented by the Socio-economic Indexes for Areas (SEIFA) Index of Relative Socio-economic Advantage and Disadvantage (IRSAD) ${ }^{21}$ score for the residential postcode of each participant.

Preliminary data screening (Eime et al. ${ }^{2}$) included ensuring that numerically coded responses to categorical items were within the specified range, and that dates of birth and self-reported heights and weights were within feasible limits. In a preliminary analysis, baseline characteristics of participants who returned survey forms in all three years of the study ('completers') and those who did not ('non-completers') were compared using t-tests and chi-square tests. Longitudinal analysis was based on the completers. All variables analysed were either quantitative (means of coded responses to a set of Likert scale items) or Yes/No dichotomies (see Tables 1 and 2). Linear mixed models and longitudinal logistic regression fitted by the method of generalised estimating equations were used to identify statistically significant differences between the two cohorts and statistically significant longitudinal trends - linear and non-linear - within each cohort. Differences between cohorts were assessed in 2-factor models incorporating cohort effects, time trends and cohort-time interactions. Time trends were assessed in simple effects analyses, i.e. separate analyses of trend for each cohort. All analyses were conducted using SPSS Version 19, with statistical significance set at $\mathrm{p}<.05$.

Results

The 2008 recruitment/response rate (the proportion of invited students who provided consent returned the first survey form) was 19.6% with retention rates in 2009 and 2010 of 82.7% and
74.0%, respectively. Respondents who returned survey forms in all three waves of the study comprised: Year 7 ($\mathrm{n}=328,74.5 \%$; aged $11-13, \mathrm{M} \pm \mathrm{SD}=12.2 \pm 0.5$ years at baseline) and Year 11 ($n=112,25.5 \%$; aged $16-18,16.2 \pm 0.6$ years at baseline). Details of sampling design, recruitment and retention rates can be found in the supplementary material.

For the Year 7 cohort those who completed all three surveys ('completers') had a lower mean self-reported weight at baseline ($\mathrm{M} \pm S \mathrm{D}=46.6 \pm 9.3 \mathrm{~kg} ; \mathrm{p}=.009$) than those who did not ('non-completers': $\mathrm{M} \pm \mathrm{SD}=49.4 \pm 10.9 \mathrm{~kg}$). There were no significant differences at baseline in mean age, SES (SEIFA IRSAD score of residential postcode), self-reported height or BMI. There were no significant differences at baseline between Year 11 completers and non-completers.

Across both cohorts, at baseline completers were significantly more likely than non-completers to report participating in PE classes at school (63.9\% v 45.8\%, p<.001), competitive team sports outside school $(64.5 \% \vee 53.7 \%, \mathrm{p}=.003)$, or competitive individual sports at school (68.6% v $55.1 \%, \mathrm{p}<.001$). There were no significant differences with regard to participation in competitive team sports in school, competitive individual sports outside school, organised but non-competitive PA or non-organised PA.

Tables 1 and 2 summarise the longitudinal changes within cohorts and differences between cohorts for perceived socioecological barriers to regular PA participation (Table 1) and socioecological factors influencing PA participation (Table 2).

The percentage of girls reporting barriers across the three socioecological domains ranged from as few as 1% for difficulties with language to 87% for lack of time due to work or study among Year 11 respondents. Around half of the barriers listed were reported consistently by about 20% of respondents in both cohorts.

The barriers for which there were significant changes within cohorts or differences between cohorts were mostly intrapersonal, including lack of energy and lack of time due to other leisure activities. At baseline, lack of time due to work or study was reported by 50% of
the younger cohort and 80% of the older cohort. Lack of energy and lack of time both trended upward in the younger cohort. Lack of energy also trended upward in the older cohort. The percentages reporting lack of time were higher in the older cohort than the younger cohort, though they tended to plateau (lack of time due to other leisure interests) or fall after leaving school (lack of time due to study). Barriers relating to the interpersonal domain showed no significant trends in either cohort and no significant differences between cohorts. Within the organisational/environmental domain, items such as cultural and religious beliefs and expectations and rules about clothing were all reported by relatively small minorities (generally less than 10\%) of respondents.

Among the potential socioecological determinants of PA participation, significant changes or differences were observed across all three domains - especially for the Year 7 cohort. In terms of intrapersonal factors, perceived competence was high overall, however it diminished over time in the Year 7 cohort, although the Year 11 cohort reported consistently high levels. This anomaly may be due to a greater self-selection bias (i.e. more competent girls being more likely to complete the survey) in the smaller Year 11 cohort compared to the Year 7 cohort. Self-efficacy did not significantly change within or differ between cohorts. Adolescent girls reported that they were moderately confident about participating in PA or sport when conditions were not ideal.

With regard to life priorities, the perceived importance of education and study was consistently high for both cohorts, although Year 11 was significantly higher than Year 7; the importance of education peaked in the final year of school (Yr 12). There were consistent and significant increases over time in the perceived importance of boyfriends/girlfriends, parttime jobs and careers and again the importance of these activities were significantly higher for the Year 11 cohort. The importance of home and family, friends and physical activities and sport remained consistently high throughout for both cohorts.

Support from family and peers (interpersonal factors) both significantly trended downwards from Year 7 to Year 9. Family support also dropped in Year 13 (i.e. after leaving school). Conversely, access to facilities (environmental factors) increased steadily with increasing age, both within and between cohorts.

Discussion

This study examined longitudinal patterns of change in intrapersonal, interpersonal and environmental determinants hypothesised to be associated with participation in PA and sport, across the adolescent period for two cohorts of girls. Understanding these determinants and how they change across transitional periods is important to contribute to evidence-based planning of public health interventions; particularly for girls who are less active than boys. Key findings to emerge from this study were associated with each of the domains of the socioecological model and included: intrapersonal barriers such as lack of time, lack of energy and perceived competence; interpersonal factors associated with family and friend/peer support; and environmental/organisational factors including access, opportunity and resources. One intrapersonal factor which did not change within or between cohorts was self-efficacy. Others have also found self-efficacy for PA to be stable across secondary school years ${ }^{22}$.

In this study there was a consistent trend that barriers associated with the intrapersonal domain increased as females matured - both within and between cohorts including 'feeling tired' or 'lacking energy', 'an inability to get going', and increasing time issues associated with other leisure activities, work or study. Clearly, as adolescents mature there are numerous work, study, and leisure activities that increase in priority along with time allocation to these activities, leaving less time for PA opportunities. It has been reported that as adolescents age their participation in PA moves away from organised, competitive activities to individual-based physical activities, particularly due to increased demands of part-time employment and increasing desire to succeed educationally ${ }^{2}$. In this study, the
importance of school, work, study, relationships, and careers also significantly increased with age. The importance of PA and sport, however, did not change and remained high, with 75% of respondents agreeing that it was an important activity. As Berger et al. ${ }^{23}$ state, there is a need to position PA and sport in the context of the lived experiences of adolescents of today - meaning that we need to encourage adolescents to find ways to fit PA and sport into their time-challenged lives. Taking a socioecological perspective, rather than an individual focus, we therefore need to encourage the development in communities of physical activity options that have lower time demands as a requirement for participation and greater flexibility in scheduling of participation. For example, while organised sport is a popular activity among children, many sports programs demand extensive and inflexible time commitments, and may not be providing an environment conducive to promoting lifelong involvement in sport ${ }^{4}$, 24

Competence in sport and PA is a key determinant of participation for adolescent girls ${ }^{7,25,26}$. Further, perceived sport competence in childhood and adolescence has been reported to be significantly associated with maintaining participation through the transition from adolescence to adulthood ${ }^{25}$. In this study, perceived competence declined for the Year 7 cohort over time, although not for the older cohort. This may be a consequence of selfselection bias in the older cohort, or it may be related to maturation in the younger cohort. Others have reported similar findings, whereby maturation status (i.e. progression towards the adult state) was inversely related to perceptions of sport competence ${ }^{26}$. Interventions that focus on developing perceived sport competence throughout adolescence, therefore, may be important for promoting lifelong PA participation ${ }^{25}$.

It is well established that support from family and peers is important for adolescent PA and sport participation ${ }^{27,28}$. Parental support has been shown to be a strong mediator for sport club participation among girls from low socio-economic areas ${ }^{29}$. Similarly, peer encouragement is important for participation in PA after school, especially for girls after the transition from primary to secondary school ${ }^{28}$. In this study, reported family support - via
encouragement, praise, watching/supervision, or direct involvement in PA - decreased over time; particularly for the Year 7 cohort. Strategies to promote and maintain family support for PA for adolescent girls are required, especially since girls appear to receive less encouragement to be active from their parents than do boys ${ }^{30}$.

Peer support was significantly higher among the younger cohort compared to the older cohort. Peer teasing can diminish peer support for, and enjoyment of, PA, and is a particular issue in the school environment ${ }^{7}$; and is also present in community environments such as organised sport ${ }^{31}$. Considering the decline in peer support reported in this study and evidence of peer teasing in schools and sports clubs, there is a need to promote more positive and inclusive environments for PA and sport participation to promote lifelong PA participation. Stafford et al ${ }^{31}$ suggest that children should be involved fully in the decisions about their sporting lives, and participate in an environment where they feel empowered to have a voice for the context of participation, where it is safe, fun and carefree.

The access to facilities score significantly increased within each cohort over time and between cohorts, indicating that access to PA opportunities increased steadily throughout adolescence. Other evidence suggests that a greater number of available PA facilities is associated with increased PA levels ${ }^{32}$. More specifically, access to facilities along with family support have been found to be strong mediators specifically between the association between socio-economic status (SES) and club sport participation ${ }^{29}$. Studies have also reported that for adolescents, the number of nearby facilities and number of nearby parks correlates positively with their PA ${ }^{33}$. This is supported by Scott et al. ${ }^{34}$ who states that both the individual facility perceptions and the total number of facilities perceived was associated with increased PA for adolescent females. Our study showed that as girls aged fewer perceived that there was a lack of opportunity or resources for PA. This was in contrast to a cross-sectional study in the United States that reported that as young people aged (from Grade 7 to University freshman) they were more likely to identify a lack of community opportunities (e.g. lack of specific sports team to join/participate in) and
resources (lack of facilities/variety of facilities) for PA^{35}. This difference may be due to the dominance of the club sport system in Australia compared to the United States.

A major strength of this study was its prospective holistic design, which allowed changes in the determinants of participation to be assessed longitudinally across the socioecological domains over a three-year period in two cohorts of adolescents. While the information about determinants was based on subjective self-report, in most instances this was unavoidable, and generally, we used established measures of these constructs. As has been pointed out elsewhere 36. It is acknowledged that while the study investigated access to a wide range of PA and sport facilities, it did not examine other aspects of the environment such as aesthetics, road and personal safety, walkability and quality of facilities. Studies of this population are difficult to conduct due to the ethical requirements of Australian education authorities to obtain specific 'opt-in' parental consent, which is exacerbated by the necessity to communicate with parents only indirectly in writing via the school and the students themselves. Consequently, participant recruitment rates were low - meaning that there is a possibility that students and/or parents with more interest in PA were more likely to have volunteered and/or given consent to participate in the study 2 , which may underestimate the barriers to participation. Comparison of the baseline characteristics of those who completed all three surveys and those who did not indicates a degree of self-selection bias towards girls with a greater competitive sport focus. A further limitation which has implications for interpretation of the results is that, because the sample size in the Year 11 cohort was much smaller than that in the Year 7 cohort, larger effect sizes (bigger differences or stronger trends) were required in order to establish statistical significance in the smaller sample.

Conclusion

This study has identified significant and interrelated patterns of change in intrapersonal, interpersonal and environmental determinants of participation in PA by girls across the adolescent period. In summary, intrapersonal barriers such as lack of time and lack of energy increased over a 3-year period for both cohorts, which were influenced by the increasing
importance of education, work and career. Therefore, flexibility in the structure and scheduling of PA opportunities is likely to be an important consideration in order to retain older adolescents in PA and sport. Perceived competence also significantly decreased from Year 7 to 9 , highlighting the need to continue to develop competency into the secondary school years. In terms of interpersonal factors, support from both family and friend/peers decreased, although only significantly so between Year 7 and 9. Strategies are required to promote family support for girls' PA along with strategies for fostering peer support and encouraging supportive and inclusive environments. Finally, reported access to a range of PA facilities was quite high and increased significantly over time within both cohorts.

Practical Implications

- Position PA and sport in the context of the lived experiences of adolescents of today using individual and organisational strategies to encourage and support adolescents to find ways to fit PA and sport into their time-challenged lives.
- Interventions that focus on developing perceived sport competence throughout adolescence may be important for promoting lifelong PA participation.
- Promote and maintain family support for adolescent girls to be active.
- Create and promote positive and inclusive environments for PA and sport.

Acknowledgements

The authors would like to thank the participating schools and students.
This study was funded by Sport and Recreation Victoria, a division of the Department of Transport, Planning and Local Infrastructure, Victorian Health Promotion Foundation (VicHealth), Victoria University and Federation University, Australia. X is supported by a VicHealth Research Practice Fellowship- Physical Activity.

Table 1: Longitudinal changes within cohorts and differences between cohorts for perceived barriers to regular participation in PA (including sport)

Barrier	Dichotomy	Variable	Cohort, calendar year and school year level										Statistically significant difference between cohorts	
			Year 7 ($\mathrm{n}=328$)					Year 11 ($\mathrm{n}=112$)						
			$\begin{aligned} & 2008 \\ & \text { Yr } 7 \end{aligned}$	$\begin{aligned} & 2009 \\ & \text { Yr } 8 \end{aligned}$	$\begin{aligned} & 2010 \\ & \text { Yr } 9 \end{aligned}$	Statistically significant trend		2008 Yr 11	2009 Yr 12	$\begin{aligned} & 2010 \\ & \text { Yr } 13 \end{aligned}$	Statistically significant trend			
						p-value Type	Sign ${ }^{1}$				p-value Type	Sign ${ }^{1}$	pvalue	Sign ${ }^{2}$
Intrapersonal barriers														
Self-consciousness about my looks when I exercise	Yes/No	\% Yes	25	23	28			28	16	19				
Feeling tired or lacking energy	Yes/No	\% Yes	33	37	42	. 029 Linear	+	37	48	52	. 011 Linear	+	. 047	+
Lack of time due to other leisure activities (e.g. other interests, socialising)	Yes/No	\% Yes	36	45	55	$<.001{ }^{\text {Linear }}$	+	55	55	57			. 006	+
Lacking time due to work or study	Yes/No	\% Yes	50	52	62	. 001 Linear	+	80	87	75	. 042 Quadratic	+	<. 001	+
Not having enough skills in physical activities	Yes/No	\% Yes	24	25	25			27	26	20				
Not being fit or strong enough	Yes/No	\% Yes	23	26	29			37	32	28				
Difficulties in organising equipment or facilities	Yes/No	\% Yes	25	21	22			30	17	18	. 020 Linear	-		
Fear of injury	Yes/No	\% Yes	21	19	17			17	12	12				
Inability to get myself going	Yes/No	\% Yes	24	27	28			39	40	43			< 001	+
Having injury, disability or illnesses	Yes/No	\% Yes	22	21	20			21	16	22				
Difficulties with language (e.g. do not understand English well enough)	Yes/No	\% Yes	4	4	6			1	1	1			. 037	-
Interpersonal barriers														
Difficulty finding someone to participate with	Yes/No	\% Yes	21	20	27			20	19	28				
Difficulties in organising friends or other people to participate	Yes/No	\% Yes	27	27	26			29	27	27				
Organisational/environmental barriers		-												
Conflict with cultural expectations or beliefs	Yes/No	\% Yes	12	8	6	. 015 Linear	-	2	3	2			. 003	-
Lack of opportunity or resources (e.g. lack of programs or facilities)	Yes/No	\% Yes	21	17	16			14	15	12				
Rules about boys and girls playing together	Yes/No	\% Yes	15	16	15			10	6	5			. 001	-
Cost of participation (e.g. buying equipment, hiring facilities)	Yes/No	\% Yes	28	27	28			25	21	33				
Conflict with religious rules, beliefs or expectations	Yes/No	\% Yes	8	6	7			1	1	1			. 005	-
Unpleasant weather (e.g. hot, cold, rainy)	Yes/No	\% Yes	31	33	36			33	37	45				
Conflict with rules about clothes that should be worn	Yes/No	\% Yes	17	13	13			7	4	2			< 001	-

${ }^{1}$ Signs indicate direction of linear trend and pattern of quadratic curvature superimposed on linear trend. ${ }^{2}$ Signs indicate the direction of difference of Year 11 relative to Year 7 .
Table 2: Longitudinal changes within cohorts and differences between cohorts in the intrapersonal, interpersonal and organisational/environmental factors influencing participation in PA (including sport) and in PA levels

Factor	Measure or dichotomy	Variable	Cohort, calendar year and school year level												Statistically significant difference between cohorts,	
			Year 7 ($\mathrm{n}=327$)						Year 11 ($\mathrm{n}=113$)							
			$\begin{aligned} & 2008 \\ & \text { Yr } 7 \end{aligned}$	$\begin{aligned} & 2009 \\ & \text { Yr } 8 \end{aligned}$	$\begin{aligned} & 2010 \\ & \text { Yr } 9 \end{aligned}$	Statistically significant trend			$\begin{aligned} & 2008 \\ & \text { Yr } 11 \end{aligned}$	$\begin{aligned} & 2009 \\ & \text { Yr } 12 \end{aligned}$	$\begin{aligned} & 2010 \\ & \text { Yr } 13 \end{aligned}$	Statistically significant trend				
						p-value	Type	Sign ${ }^{1}$				p -value	Type	Sign ${ }^{1}$	$\begin{gathered} \mathrm{p}- \\ \text { value } \end{gathered}$	Sign ${ }^{2}$
Intrapersonal factors																
Perceived competence	Scale (1-5)	Mean	3.9	3.87	3.75	<. 001	Linear	-	3.83	3.97	3.81					
Self-efficacy ${ }^{3}$ Importance of activities:	Scale (1-5)	Mean		2.85	2.87					2.72	2.72					
Schoolworkleducation/study	Yes/No	\% Yes	86	89	89				95	99	95	. 045	Quadratic	+-	<. 001	
Friends	Yes/No	\% Yes	90	99	94	< 001	Quadratic	+	95	98	96					
Boyfriend/girffriend	Yes/No	\% Yes	28	42	43	$\begin{array}{r} <.001 \\ .025 \end{array}$	Linear/ quadratic	$\begin{aligned} & + \\ & +- \end{aligned}$	35	49	55	$\text { < } 001$	Linear		. 030	+
Part-time job	Yes/No	\% Yes	40	48	55	$\text { < } 001$	Linear		53	46	75	< 0001	Linear/ quadratic	+	. 008	+
Career	Yes/No	\% Yes	61	67	71	. 002	Linear	+	81	84	86				< 0001	+
Community service (volunteering)	Yes/No	\% Yes	29	29	24				26	29	38	. 019	Linear	+		
Home and family	Yes/No	\% Yes	92	97	91	. 001	Quadratic	+-	91	97	94					
Physical activities and sport	Yes/No	\% Yes	79	84	76	. 003	Quadratic	+-	79	77	75					
Interpersonal factors																
Family support	Scale (1-5)	Mean	3.97	3.92	3.67	$\begin{array}{r} <.001 \\ .001 \end{array}$	Linear/ quadratic	$+$	3.87	3.87	3.71	. 0198	Linear	-		
Friend support	Scale (1-5)	Mean	3.65	3.67	3.51	. 004	Linear/ quadratic	$+$	3.58	3.42	3.45				. 008	-
Organisational/environmental factors																
Access to facilities	Scale (1-4)	Mean	3.08	3.24		$<.001$	Linear Quadratic	$\begin{gathered} + \\ +- \\ \hline \end{gathered}$	3.33	3.43	3.50	<. 001	Linear	+	<. 001	+

${ }^{1}$ Signs indicate direction of linear trend and pattern of quadratic curvature superimposed on linear trend. ${ }^{2}$ Signs indicate the direction of difference of Year 11 relative to Year $7 .{ }^{3}$ The self-efficacy question was not 331 asked in 2008.

References

1. Hallal, P., L. Andersen, F. Bull, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet 2012; 380:247-257.
2. Eime, R., J. Harvey, N. Sawyer, et al. Understanding the contexts of adolescent female participation in sport and physical activity. Res Q Exercise Sport 2013; 84(2):157-166.
3. Garcia, A., N. Pender, C. Antonakos,D. Ronis. Changes in physical activity beliefs and behaviors of boys and girls across the transition to junior high school. J Adolescent Health 1998; 22:394-402.
4. Eime, R., W. Payne, M. Casey, et al. Transition in participation in sport and unstructured physical activity for rural living adolescent girls. Health Edu Res 2010; 25(2):282-293.
5. Craggs, C., K. Corder, E.M.F. van Sluijs, et al. Determinants of Change in Physical Activity in Children and Adolescents: A Systematic Review. Am J Prev Med 2011; 40(6):645-658.
6. Bauman, A.E., R.S. Reis, J.F. Sallis, et al. Martin. Correlates of physical activity: why are some people physically active and others not? Lancet 2012; 380(9838):258-271.
7. Casey, M., R. Eime, W. Payne, et al. Using a socioecological approach to examine participation in sport and physical activity among rural adolescent girls. Qual Health Res 2009; 19(7):881-893.
8. Craike, M., C. Symons, R. Eime, et al. A comparative study of factors influencing participation in sport and physical activity for metropolitan and rural female adolescents. Annals of Leisure Research 2011; 14(4):355-368.
9. Sallis, J.,N. Owen, Ecological models of health behavior, in Health Behavior and Health Education: Theory, research, and practice, K. Glanz, B. Rimer, and F. Lewis, Editors. 2002, Jossey-Bass: San Francisco. p. 462-485.
10. Humbert, L., K. Chad, M. Bruner, et al. Using naturalistic ecological approach to examine the factors influencing youth physical activity across grades 7 to 12. Health Edu Behav 2008; 35(2):158-173.
11. Humbert, M., K. Chad, K. Spink, et al. Factors that influence physical activity participation among high- and low-SES youth. Qual Health Res 2006; 16(4):467-483.
12. Commonwealth of Australia, National sport and active recreation policy framework, 2011, Commonwealth of Australia: Canberra.
13. Sallis, J. Amherst Health and Activity Study (AHA). Adult survey of child health habits. July 2010]; Available at: http://www.driamessallis.sdsu.edu/Documents/amhersthealthandactivitystudystudents urvey.pdf. Accessed 12 September 2013.
14. Sallis, J., B. Saelens,L. Frank. The Neighborhood Quality of Life Study. August 2010]. Available at: http://www.drjamessallis.sdsu.edu/Documents/NQLS S1.pdf. Accessed 12 September 2013.
15. Anderson, C. Athletic identity and its relation to exercise behavior: Scale development and initial validation. J Sport Exercise Psy 2004; 26:39-56.
16. McAuley, E., T. Duncan, V. Tammen. Psychometric properties of the Intrinsic Motivation Inventory in a competetive sport setting: A confirmatory factor analysis. RQES 1989; 60:48-58.
17. Weissinger, E.,D. Bandalos. Development, reliability and validity of a scale to measure intrinsic motivation in leisure. J Leisure Research 1995; 27(4):379-400.
18. Marcus, B.,L. Forsyth, Motivating people to be physically active2003, Illinois: Human Kinetics: Champaign. 12-15; 64-65.
19. Tsai, E.,D. Coleman. Preferences for active recreation and perceived constraints to regular active recreation participation: A cross-cultural study of Hong Kong and Australian University students. Journal of the Canadian Association for Leisure Studies 2007; 31:155-189.
20. Sallis, J.F., W.C. Taylor, M. Dowda, P.S. et al. Correlates of vigorous physical activity for children in grades 1 through 12: comparing parent-reported and objectively measured physical activity. / Etude de I ' activite physique chez des enfants, de I' ecole primaire au lycee. Pediatr Exerc Sci 2002; 14(1):30-44.
21. Australian Bureau of Statistics, Socio-Economic Indexes for Areas (SEIFA), Data Cube 2006, 2008, Australian Bureau of Statistics: Canberra.
22. Dishman, R.K., R.P. Saunders, R.W. Motl, et al. Self-Efficacy Moderates the Relation Between Declines in Physical Activity and Perceived Social Support in High School Girls. J Pediatr Psychol 2009; 34(4):441-451.
23. Berger, I.E., N. O'Reilly, M.M. Parent, et al. Determinants of Sport Participation Among Canadian Adolescents. Sport Management Review 2008; 11(3):277-307.
24. Cote, J., R. Lidor,D. Hackfort. ISSP position stand: To sample or to speciliaze? Seven postulates about youth sport activities that lead to continued particpiation and elite performance. International Journal of Sport and Exercise Psychology 2009; 7(1):7-17.
25. Jose, K., L. Blizzard, T. Dwyer, et al. Childhood and adolescent predictors of leisure time physical activity during the transition from adolescence to adulthood: a population based cohort study. International Journal of Behavioral Nutrition and Physical Activity 2011; 8(54).
26. Hunter Smart, J., S. Cumming, L. Sherar, et al. Maturity associated variance in physical activity and health-related quality of life in adolescent females. A mediated effects model. JPAH 2012; 9(1):86-95.
27. Beets, M., B. Cardinal,B. Alderman. Parental social support and the physical activityrelated behaviors of youth: A review Health Edu Behav 2010; 37(5):621-644.
28. Jago, R., A. Page, A. Cooper. Friends and physical activity during the transition from Primary to Secondary School. MSSE 2012; 44(1):111-117.
29. Eime, R., J. Harvey, M. Craike, et al. Family support and ease of access link socioeconomic status and sports club membership in adolescent girls: A mediation study. IJBNPA 2013; 10(50).
30. Timperio, A., J.O. Salmon, K. Ball, et al. Family physical activity and sedentary environments and weight change in children. Int J Pediatr Obes 2008; 3(3):160-167.
31. Stafford, A., K. Alexander, D. Fry. 'There was something that wasn't right because that was the only place I ever got treated like that': Children and young people's experiences of emotional harm in sport. Childhood 2013.
32. Slater, S., R. Ewing, L. Powell, et al. The Association Between Community Physical Activity Settings and Youth Physical Activity, Obesity, and Body Mass Index. J Adolescent Health 2010; 47:496-503.
33. Norman, G., S. Nutter, S. Ryan, et al. Community design and access to recreational facilities as correlates of adolescent physical activity and body-mass index. JPAH 2006; 3 (Supplement 1):S118-S128.
34. Scott, M., K. Evenson, D. Cohen, et al. Comparing perceived and objectively measured access to recreational facilities as predictors of physical activity in adolescent girls. Journal of Urban Health 2007; 84(3):346-359.
35. Gyurcsik, N.,S. Bray. Coping with barriers to vigorous physical activity during transition to university. Family Community Health 2004; 27(2):130-142.
36. Casey, M., Harvey, JT., Telford, A., et al. Effectiveness of a school-community linked program on physical activity levels and health-related quality of life for adolescent girls. BMC Public Health 2014; In Press. doi: 10.186/1471-2458-14-649
